Suppr超能文献

大自然如何利用非特异性催化和碳水化合物结合模块来创造酶的特异性。

How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity.

机构信息

Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20889-94. doi: 10.1073/pnas.1212034109. Epub 2012 Dec 3.

Abstract

Noncatalytic carbohydrate binding modules (CBMs) are components of glycoside hydrolases that attack generally inaccessible substrates. CBMs mediate a two- to fivefold elevation in the activity of endo-acting enzymes, likely through increasing the concentration of the appended enzymes in the vicinity of the substrate. The function of CBMs appended to exo-acting glycoside hydrolases is unclear because their typical endo-binding mode would not fulfill a targeting role. Here we show that the Bacillus subtilis exo-acting β-fructosidase SacC, which specifically hydrolyses levan, contains the founding member of CBM family 66 (CBM66). The SacC-derived CBM66 (BsCBM66) targets the terminal fructosides of the major fructans found in nature. The crystal structure of BsCBM66 in complex with ligands reveals extensive interactions with the terminal fructose moiety (Fru-3) of levantriose but only limited hydrophobic contacts with Fru-2, explaining why the CBM displays broad specificity. Removal of BsCBM66 from SacC results in a ~100-fold reduction in activity against levan. The truncated enzyme functions as a nonspecific β-fructosidase displaying similar activity against β-2,1- and β-2,6-linked fructans and their respective fructooligosaccharides. Conversely, appending BsCBM66 to BT3082, a nonspecific β-fructosidase from Bacteroides thetaiotaomicron, confers exolevanase activity on the enzyme. We propose that BsCBM66 confers specificity for levan, a branched fructan, through an "avidity" mechanism in which the CBM and the catalytic module target the termini of different branches of the same polysaccharide molecule. This report identifies a unique mechanism by which CBMs modulate enzyme function, and shows how specificity can be tailored by integrating nonspecific catalytic and binding modules into a single enzyme.

摘要

非催化型碳水化合物结合模块(CBMs)是糖苷水解酶的组成部分,可攻击通常难以接近的底物。CBMs 将内作用酶的活性提高了两到五倍,这可能是通过增加附着在附近的酶的浓度来实现的。目前尚不清楚附着在外作用糖苷水解酶上的 CBM 的功能,因为它们典型的内结合模式不能起到靶向作用。在这里,我们展示了枯草芽孢杆菌外作用β-果聚糖酶 SacC 含有 CBM 家族 66(CBM66)的创始成员。SacC 衍生的 CBM66(BsCBM66)靶向自然界中发现的主要果聚糖的末端果糖。BsCBM66 与配体复合物的晶体结构揭示了与蔗果三糖末端果糖部分(Fru-3)的广泛相互作用,但与 Fru-2 只有有限的疏水性接触,这解释了为什么该 CBM 具有广泛的特异性。从 SacC 中去除 BsCBM66 会导致对蔗果聚糖的活性降低约 100 倍。截短的酶作为非特异性的β-果聚糖酶,对β-2,1-和β-2,6-连接的果聚糖及其各自的果寡糖显示出相似的活性。相反,将 BsCBM66 添加到 BT3082(一种来自拟杆菌属的非特异性β-果聚糖酶)上,可使该酶具有外切蔗果聚糖酶的活性。我们提出,BsCBM66 通过“亲和力”机制赋予蔗果聚糖(一种支链果聚糖)特异性,其中 CBM 和催化模块靶向同一多糖分子不同支链的末端。本报告确定了 CBM 调节酶功能的独特机制,并展示了如何通过将非特异性催化和结合模块整合到单个酶中,来定制特异性。

相似文献

1
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20889-94. doi: 10.1073/pnas.1212034109. Epub 2012 Dec 3.
3
Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan.
J Biol Chem. 2013 Feb 15;288(7):4799-809. doi: 10.1074/jbc.M112.432781. Epub 2012 Dec 10.
5
Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules.
J Biol Chem. 2010 Nov 12;285(46):35999-6009. doi: 10.1074/jbc.M110.166330. Epub 2010 Sep 8.
7
8
New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase.
Appl Environ Microbiol. 2021 Feb 12;87(5):e0263420. doi: 10.1128/AEM.02634-20. Epub 2020 Dec 18.
9
Carbohydrate-binding modules: fine-tuning polysaccharide recognition.
Biochem J. 2004 Sep 15;382(Pt 3):769-81. doi: 10.1042/BJ20040892.

引用本文的文献

1
Organic matter degradation by oceanic fungi differs between polar and non-polar waters.
Nat Commun. 2025 Aug 15;16(1):7589. doi: 10.1038/s41467-025-63047-4.
2
Genome-Wide Identification and Analysis of Carbohydrate-Binding Modules in .
Int J Mol Sci. 2025 Jan 22;26(3):919. doi: 10.3390/ijms26030919.
5
Functional studies on tandem carbohydrate-binding modules of a multimodular enzyme possessing two catalytic domains.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0088824. doi: 10.1128/aem.00888-24. Epub 2024 Jun 28.
7
Expanding the horizons of levan: from microbial biosynthesis to applications and advanced detection methods.
World J Microbiol Biotechnol. 2024 May 24;40(7):214. doi: 10.1007/s11274-024-04023-w.
8
Three-component systems represent a common pathway for extracytoplasmic addition of pentofuranose sugars into bacterial glycans.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2402554121. doi: 10.1073/pnas.2402554121. Epub 2024 May 15.
10
Identification of a novel xanthan-binding module of a multi-modular sp. xanthanase.
Front Microbiol. 2024 Mar 26;15:1386552. doi: 10.3389/fmicb.2024.1386552. eCollection 2024.

本文引用的文献

2
Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15293-8. doi: 10.1073/pnas.1005732107. Epub 2010 Aug 9.
3
Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules.
J Biol Chem. 2010 Oct 8;285(41):31742-54. doi: 10.1074/jbc.M110.142133. Epub 2010 Jul 21.
4
Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations.
Cell. 2010 Jun 25;141(7):1241-52. doi: 10.1016/j.cell.2010.05.005. Epub 2010 Jun 24.
5
The biochemistry and structural biology of plant cell wall deconstruction.
Plant Physiol. 2010 Jun;153(2):444-55. doi: 10.1104/pp.110.156646. Epub 2010 Apr 20.
6
Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications.
J Exp Bot. 2009;60(3):727-40. doi: 10.1093/jxb/ern333. Epub 2009 Jan 6.
7
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
8
Prebiotic capacity of inulin-type fructans.
J Nutr. 2007 Nov;137(11 Suppl):2503S-2506S. doi: 10.1093/jn/137.11.2503S.
9
Interactions and competition within the microbial community of the human colon: links between diet and health.
Environ Microbiol. 2007 May;9(5):1101-11. doi: 10.1111/j.1462-2920.2007.01281.x.
10
Biomass recalcitrance: engineering plants and enzymes for biofuels production.
Science. 2007 Feb 9;315(5813):804-7. doi: 10.1126/science.1137016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验