Saulnier George E, Castro Janna C, Cook Curtiss B
Department of Information Technology, Mayo Clinic, Scottsdale, AZ, USA.
Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, USA
J Diabetes Sci Technol. 2014 May;8(3):560-7. doi: 10.1177/1932296814524873. Epub 2014 Feb 27.
Glucose control can be problematic in critically ill patients. We evaluated the impact of statistical transformation on interpretation of intensive care unit inpatient glucose control data. Point-of-care blood glucose (POC-BG) data derived from patients in the intensive care unit for 2011 was obtained. Box-Cox transformation of POC-BG measurements was performed, and distribution of data was determined before and after transformation. Different data subsets were used to establish statistical upper and lower control limits. Exponentially weighted moving average (EWMA) control charts constructed from April, October, and November data determined whether out-of-control events could be identified differently in transformed versus nontransformed data. A total of 8679 POC-BG values were analyzed. POC-BG distributions in nontransformed data were skewed but approached normality after transformation. EWMA control charts revealed differences in projected detection of out-of-control events. In April, an out-of-control process resulting in the lower control limit being exceeded was identified at sample 116 in nontransformed data but not in transformed data. October transformed data detected an out-of-control process exceeding the upper control limit at sample 27 that was not detected in nontransformed data. Nontransformed November results remained in control, but transformation identified an out-of-control event less than 10 samples into the observation period. Using statistical methods to assess population-based glucose control in the intensive care unit could alter conclusions about the effectiveness of care processes for managing hyperglycemia. Further study is required to determine whether transformed versus nontransformed data change clinical decisions about the interpretation of care or intervention results.
在危重症患者中,血糖控制可能存在问题。我们评估了统计转换对重症监护病房住院患者血糖控制数据解读的影响。获取了2011年重症监护病房患者的即时血糖(POC - BG)数据。对POC - BG测量值进行了Box - Cox转换,并确定了转换前后的数据分布。使用不同的数据子集来建立统计上下控制限。由4月、10月和11月的数据构建的指数加权移动平均(EWMA)控制图,确定了在转换后与未转换的数据中,失控事件的识别是否存在差异。总共分析了8679个POC - BG值。未转换数据中的POC - BG分布呈偏态,但转换后接近正态分布。EWMA控制图显示了在预测失控事件检测方面的差异。4月,在未转换数据的第116个样本中识别出一个导致下限被突破的失控过程,但在转换后的数据中未识别出。10月,转换后的数据在第27个样本中检测到一个超过上限的失控过程,而在未转换数据中未检测到。11月未转换的数据保持在控制范围内,但转换后在观察期内不到10个样本时就识别出了一个失控事件。使用统计方法评估重症监护病房基于人群的血糖控制可能会改变关于管理高血糖护理过程有效性的结论。需要进一步研究以确定转换后与未转换的数据是否会改变关于护理解读或干预结果的临床决策。