Suppr超能文献

葡萄糖的半对数刻度能提供高血糖和低血糖的平衡视图。

A semilogarithmic scale for glucose provides a balanced view of hyperglycemia and hypoglycemia.

作者信息

Rodbard David

机构信息

Biomedical Informatics Consultants, LLC, Potomac, Maryland 20854-4721, USA.

出版信息

J Diabetes Sci Technol. 2009 Nov 1;3(6):1395-401. doi: 10.1177/193229680900300620.

Abstract

OBJECTIVE

It would be desirable to improve the ability of physicians and patients to identify hypoglycemic episodes when viewing displays of glucose by date, time of day, or day of the week.

RESEARCH DESIGN AND METHODS

A logarithmic scale is utilized for display of glucose versus date and time of day using a range of 40 to 400 mg/dl. Several plausible alternatives are considered for transformation of the glucose data.

RESULT

Use of a semilogarithmic plot triples the percentage of the vertical axis allocated to hypoglycemia (e.g., 40-80 mg/dl) from 10% to 30.1% while compressing the hyperglycemic region. The log scale improves the symmetry of the glucose distribution. Transformations were evaluated corresponding to the Schlichtkrull M(100) value, the high blood glucose index/low blood glucose index of Kovatchev and associates, an index of glycemic control developed by the present author, and the GRADE score of Hill and coworkers. Results are similar for all four transformations. This approach is applicable both to self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM). Based on preliminary results, it is proposed that the log transform could potentially facilitate analysis of glucose patterns and may facilitate rapid and consistent detection and appreciation of the severity and consistency of hypoglycemic episodes, even in the presence of complex overlapping patterns commonly observed in both SMBG and CGM glucose profiles.

CONCLUSION

Display of glucose on a logarithmic scale can potentially improve the accuracy of analysis and interpretation of popular methods for graphic display of glucose values. Device manufacturers should consider including options for semilogarithmic display of glucose on SMBG meters, CGM sensors, and software for retrospective analyses of glucose data.

摘要

目的

当按日期、一天中的时间或一周中的某天查看血糖显示时,提高医生和患者识别低血糖发作的能力将是很理想的。

研究设计与方法

使用对数刻度来显示血糖与日期及一天中的时间,血糖范围为40至400mg/dl。考虑了几种对血糖数据进行转换的合理替代方法。

结果

使用半对数图可使分配给低血糖(如40 - 80mg/dl)的垂直轴百分比从10%增至30.1%,增加了两倍,同时压缩了高血糖区域。对数刻度改善了血糖分布的对称性。对应于施利希特克鲁尔M(100)值、科瓦切夫及其同事的高血糖指数/低血糖指数、作者开发的血糖控制指数以及希尔及其同事的GRADE评分,对转换进行了评估。所有四种转换的结果相似。这种方法适用于血糖自我监测(SMBG)和连续血糖监测(CGM)。基于初步结果,有人提出对数转换可能有助于分析血糖模式,并且可能有助于快速且一致地检测和认识低血糖发作的严重程度及一致性,即使在SMBG和CGM血糖谱中常见的复杂重叠模式存在的情况下也是如此。

结论

以对数刻度显示血糖可能会提高常用血糖值图形显示方法的分析和解释准确性。设备制造商应考虑在SMBG血糖仪、CGM传感器以及用于血糖数据回顾性分析的软件中纳入血糖半对数显示选项。

相似文献

1
A semilogarithmic scale for glucose provides a balanced view of hyperglycemia and hypoglycemia.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1395-401. doi: 10.1177/193229680900300620.
2
Display of glucose distributions by date, time of day, and day of week: new and improved methods.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1388-94. doi: 10.1177/193229680900300619.
3
Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
Diabetes Technol Ther. 2015 Mar;17(3):177-86. doi: 10.1089/dia.2014.0272. Epub 2014 Dec 1.
4
Clinical need for continuous glucose monitoring in the hospital.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1309-18. doi: 10.1177/193229680900300611.
5
Evaluating quality of glycemic control: graphical displays of hypo- and hyperglycemia, time in target range, and mean glucose.
J Diabetes Sci Technol. 2015 Jan;9(1):56-62. doi: 10.1177/1932296814551046. Epub 2014 Oct 14.
6
Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities.
Diabetes Technol Ther. 2016 Feb;18 Suppl 2(Suppl 2):S3-S13. doi: 10.1089/dia.2015.0417.
7
Risk of Hyperglycemia and Hypoglycemia in Patients with Acute Ischemic Stroke Based on Continuous Glucose Monitoring.
J Stroke Cerebrovasc Dis. 2019 Dec;28(12):104346. doi: 10.1016/j.jstrokecerebrovasdis.2019.104346. Epub 2019 Sep 21.
8
Glycemic control in the medical intensive care unit.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1330-41. doi: 10.1177/193229680900300613.
9
Perioperative and critical illness dysglycemia--controlling the iceberg.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1288-91. doi: 10.1177/193229680900300608.
10
Perioperative blood glucose monitoring in the general surgical population.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1282-7. doi: 10.1177/193229680900300607.

引用本文的文献

1
Statistical Packages and Algorithms for the Analysis of Continuous Glucose Monitoring Data: A Systematic Review.
J Diabetes Sci Technol. 2025 May;19(3):787-809. doi: 10.1177/19322968231221803. Epub 2024 Jan 5.
2
Interpreting blood GLUcose data with R package iglu.
PLoS One. 2021 Apr 1;16(4):e0248560. doi: 10.1371/journal.pone.0248560. eCollection 2021.
4
Informative graphing of continuous safety variables relative to normal reference limits.
BMC Med Res Methodol. 2018 May 16;18(1):40. doi: 10.1186/s12874-018-0504-z.
5
Modeling Inpatient Glucose Management Programs on Hospital Infection Control Programs: An Infrastructural Model of Excellence.
Jt Comm J Qual Patient Saf. 2015 Jul;41(7):325-36. doi: 10.1016/s1553-7250(15)41043-8.
6
Escaping the Hemoglobin A1c-Centric World in Evaluating Diabetes Mellitus Interventions.
J Diabetes Sci Technol. 2015 Feb 19;9(5):1148-51. doi: 10.1177/1932296815576363.
7
Statistical transformation and the interpretation of inpatient glucose control data from the intensive care unit.
J Diabetes Sci Technol. 2014 May;8(3):560-7. doi: 10.1177/1932296814524873. Epub 2014 Feb 27.
8
Glucose Fluctuations during Gestation: An Additional Tool for Monitoring Pregnancy Complicated by Diabetes.
Int J Endocrinol. 2013;2013:279021. doi: 10.1155/2013/279021. Epub 2013 Nov 11.
10
Glycemic variability in hospitalized patients: choosing metrics while awaiting the evidence.
Curr Diab Rep. 2013 Feb;13(1):138-54. doi: 10.1007/s11892-012-0345-9.

本文引用的文献

1
New approaches to display of self-monitoring of blood glucose data.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1121-7. doi: 10.1177/193229680900300515.
2
Display of glucose distributions by date, time of day, and day of week: new and improved methods.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1388-94. doi: 10.1177/193229680900300619.
4
5
New and improved methods to characterize glycemic variability using continuous glucose monitoring.
Diabetes Technol Ther. 2009 Sep;11(9):551-65. doi: 10.1089/dia.2009.0015.
6
Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control.
Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S55-67. doi: 10.1089/dia.2008.0132.
9
A method for assessing quality of control from glucose profiles.
Diabet Med. 2007 Jul;24(7):753-8. doi: 10.1111/j.1464-5491.2007.02119.x. Epub 2007 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验