Ramundo Silvia, Casero David, Mühlhaus Timo, Hemme Dorothea, Sommer Frederik, Crèvecoeur Michèle, Rahire Michèle, Schroda Michael, Rusch Jannette, Goodenough Ursula, Pellegrini Matteo, Perez-Perez Maria Esther, Crespo José Luis, Schaad Olivier, Civic Natacha, Rochaix Jean David
Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095.
Plant Cell. 2014 May;26(5):2201-2222. doi: 10.1105/tpc.114.124842. Epub 2014 May 30.
Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.
质体蛋白质稳态在叶绿体生物发生以及对环境条件变化的响应过程中至关重要。除了进化上保守的丝氨酸蛋白酶ClpP的催化亚基外,参与质体蛋白质质量控制的蛋白酶和分子伴侣均由细胞核编码。与大肠杆菌中的同源物不同,这种叶绿体蛋白酶对细胞活力至关重要。为了研究其功能,我们使用了莱茵衣藻中最近开发的可抑制叶绿体基因表达系统。利用这个可抑制系统,我们发现ClpP的选择性逐渐耗尽会导致叶绿体形态改变,形成囊泡,并诱导广泛的细胞质空泡化,这让人联想到自噬。在ClpP耗尽过程中对转录组和蛋白质组的分析揭示了一组在蛋白质水平上含量更高但在RNA水平上并非如此的蛋白质。这些蛋白质可能包括一些ClpP底物。此外,在质体蛋白质稳态受到干扰时,小热休克蛋白、分子伴侣、蛋白酶以及参与类囊体维持的蛋白质在RNA和蛋白质水平上的积累特异性增加,这表明存在一条参与细胞器质量控制的叶绿体到细胞核的信号通路。我们认为这代表了一种叶绿体未折叠蛋白反应,在概念上类似于在内质网和线粒体中观察到的情况。