Suppr超能文献

灵长类动物腹侧被盖区在强化与动机中的作用。

Role of the primate ventral tegmental area in reinforcement and motivation.

作者信息

Arsenault John T, Rima Samy, Stemmann Heiko, Vanduffel Wim

机构信息

Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA 02129, USA.

Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium.

出版信息

Curr Biol. 2014 Jun 16;24(12):1347-1353. doi: 10.1016/j.cub.2014.04.044. Epub 2014 May 29.

Abstract

Monkey electrophysiology suggests that the activity of the ventral tegmental area (VTA) helps regulate reinforcement learning and motivated behavior, in part by broadcasting prediction error signals throughout the reward system. However, electrophysiological studies do not allow causal inferences regarding the activity of VTA neurons with respect to these processes because they require artificial manipulation of neuronal firing. Rodent studies fulfilled this requirement by demonstrating that electrical and optogenetic VTA stimulation can induce learning and modulate downstream structures. Still, the primate dopamine system has diverged significantly from that of rodents, exhibiting greatly expanded and uniquely distributed cortical and subcortical innervation patterns. Here, we bridge the gap between rodent perturbation studies and monkey electrophysiology using chronic electrical microstimulation of macaque VTA (VTA-EM). VTA-EM was found to reinforce cue selection in an operant task and to motivate future cue selection using a Pavlovian paradigm. Moreover, by combining VTA-EM with concurrent fMRI, we demonstrated that VTA-EM increased fMRI activity throughout most of the dopaminergic reward system. These results establish a causative role for primate VTA in regulating stimulus-specific reinforcement and motivation as well as in modulating activity throughout the reward system.

摘要

猴子的电生理学研究表明,腹侧被盖区(VTA)的活动有助于调节强化学习和动机行为,部分原因是通过在整个奖赏系统中传播预测误差信号。然而,电生理学研究无法对VTA神经元活动与这些过程之间进行因果推断,因为它们需要对神经元放电进行人工操控。啮齿动物研究通过证明电刺激和光遗传学刺激VTA可以诱导学习并调节下游结构,满足了这一要求。尽管如此,灵长类动物的多巴胺系统与啮齿动物的多巴胺系统已经有了显著差异,表现出大大扩展且独特分布的皮质和皮质下神经支配模式。在这里,我们使用猕猴VTA的慢性电微刺激(VTA-EM)弥合了啮齿动物扰动研究和猴子电生理学之间的差距。我们发现VTA-EM在操作性任务中强化线索选择,并使用巴甫洛夫范式激发未来的线索选择。此外,通过将VTA-EM与同步功能磁共振成像相结合,我们证明VTA-EM增加了大多数多巴胺能奖赏系统的功能磁共振成像活动。这些结果确立了灵长类动物VTA在调节刺激特异性强化和动机以及调节整个奖赏系统活动方面的因果作用。

相似文献

1
Role of the primate ventral tegmental area in reinforcement and motivation.
Curr Biol. 2014 Jun 16;24(12):1347-1353. doi: 10.1016/j.cub.2014.04.044. Epub 2014 May 29.
2
Neurons of the Ventral Tegmental Area Encode Individual Differences in Motivational "Wanting" for Reward Cues.
J Neurosci. 2020 Nov 11;40(46):8951-8963. doi: 10.1523/JNEUROSCI.2947-19.2020. Epub 2020 Oct 12.
4
Ventral pallidum neurons projecting to the ventral tegmental area reinforce but do not invigorate reward-seeking behavior.
Cell Rep. 2024 Jan 23;43(1):113669. doi: 10.1016/j.celrep.2023.113669. Epub 2024 Jan 8.
5
From Prediction to Action: Dissociable Roles of Ventral Tegmental Area and Substantia Nigra Dopamine Neurons in Instrumental Reinforcement.
J Neurosci. 2023 May 24;43(21):3895-3908. doi: 10.1523/JNEUROSCI.0028-23.2023. Epub 2023 Apr 25.
7
Activation of Pedunculopontine Glutamate Neurons Is Reinforcing.
J Neurosci. 2017 Jan 4;37(1):38-46. doi: 10.1523/JNEUROSCI.3082-16.2016.
8
Ventral midbrain stimulation induces perceptual learning and cortical plasticity in primates.
Nat Commun. 2019 Aug 9;10(1):3591. doi: 10.1038/s41467-019-11527-9.
9
Ventral Tegmental Dopamine Neurons Participate in Reward Identity Predictions.
Curr Biol. 2019 Jan 7;29(1):93-103.e3. doi: 10.1016/j.cub.2018.11.050. Epub 2018 Dec 20.
10
Synergy of Distinct Dopamine Projection Populations in Behavioral Reinforcement.
Neuron. 2020 Mar 4;105(5):909-920.e5. doi: 10.1016/j.neuron.2019.11.024. Epub 2019 Dec 23.

引用本文的文献

1
MEBRAINS 1.0: A new population-based macaque atlas.
Imaging Neurosci (Camb). 2024 Feb 2;2. doi: 10.1162/imag_a_00077. eCollection 2024.
2
Ventral pallidum neurons projecting to the ventral tegmental area reinforce but do not invigorate reward-seeking behavior.
Cell Rep. 2024 Jan 23;43(1):113669. doi: 10.1016/j.celrep.2023.113669. Epub 2024 Jan 8.
3
Dynamics of Lateral Habenula-Ventral Tegmental Area Microcircuit on Pain-Related Cognitive Dysfunctions.
Neurol Int. 2023 Oct 27;15(4):1303-1319. doi: 10.3390/neurolint15040082.
4
Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective.
Int J Mol Sci. 2023 May 22;24(10):9083. doi: 10.3390/ijms24109083.
5
Inpatient suicide in psychiatric settings: Evaluation of current prevention measures.
Front Psychiatry. 2022 Oct 28;13:997974. doi: 10.3389/fpsyt.2022.997974. eCollection 2022.
6
"Wanting" versus "needing" related value: An fMRI meta-analysis.
Brain Behav. 2022 Sep;12(9):e32713. doi: 10.1002/brb3.2713. Epub 2022 Aug 24.
8
A multisynaptic pathway from the ventral midbrain toward spinal motoneurons in monkeys.
J Physiol. 2022 Apr;600(7):1731-1752. doi: 10.1113/JP282429. Epub 2022 Feb 17.
9
NRM 2021 Abstract Booklet.
J Cereb Blood Flow Metab. 2021 Dec;41(1_suppl):11-309. doi: 10.1177/0271678X211061050.
10
A reference tissue forward model for improved PET accuracy using within-scan displacement studies.
J Cereb Blood Flow Metab. 2022 Jun;42(6):1007-1019. doi: 10.1177/0271678X211065212. Epub 2021 Dec 11.

本文引用的文献

1
A causal link between prediction errors, dopamine neurons and learning.
Nat Neurosci. 2013 Jul;16(7):966-73. doi: 10.1038/nn.3413. Epub 2013 May 26.
2
Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex.
Neuron. 2013 Mar 20;77(6):1174-86. doi: 10.1016/j.neuron.2013.01.008.
3
Phasic mesolimbic dopamine release tracks reward seeking during expression of Pavlovian-to-instrumental transfer.
Biol Psychiatry. 2013 Apr 15;73(8):747-55. doi: 10.1016/j.biopsych.2012.12.005. Epub 2013 Jan 29.
4
Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.
Nature. 2012 Dec 20;492(7429):452-6. doi: 10.1038/nature11657. Epub 2012 Nov 25.
5
The mysterious motivational functions of mesolimbic dopamine.
Neuron. 2012 Nov 8;76(3):470-85. doi: 10.1016/j.neuron.2012.10.021.
8
Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior.
J Neurosci. 2011 Jul 27;31(30):10829-35. doi: 10.1523/JNEUROSCI.2246-11.2011.
9
Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.
J Neurosci Methods. 2011 Aug 15;199(2):265-72. doi: 10.1016/j.jneumeth.2011.05.025. Epub 2011 Jun 13.
10
Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning.
J Neurosci. 2011 Feb 16;31(7):2481-7. doi: 10.1523/JNEUROSCI.5411-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验