Suppr超能文献

对前额叶皮层多巴胺能投射的强直或相位刺激使小鼠维持或偏离先前习得的行为策略。

Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.

作者信息

Ellwood Ian T, Patel Tosha, Wadia Varun, Lee Anthony T, Liptak Alayna T, Bender Kevin J, Sohal Vikaas S

机构信息

Department of Psychiatry.

Weill Institute for Neurosciences.

出版信息

J Neurosci. 2017 Aug 30;37(35):8315-8329. doi: 10.1523/JNEUROSCI.1221-17.2017. Epub 2017 Jul 24.

Abstract

Dopamine neurons in the ventral tegmental area (VTA) encode reward prediction errors and can drive reinforcement learning through their projections to striatum, but much less is known about their projections to prefrontal cortex (PFC). Here, we studied these projections and observed phasic VTA-PFC fiber photometry signals after the delivery of rewards. Next, we studied how optogenetic stimulation of these projections affects behavior using conditioned place preference and a task in which mice learn associations between cues and food rewards and then use those associations to make choices. Neither phasic nor tonic stimulation of dopaminergic VTA-PFC projections elicited place preference. Furthermore, substituting phasic VTA-PFC stimulation for food rewards was not sufficient to reinforce new cue-reward associations nor maintain previously learned ones. However, the same patterns of stimulation that failed to reinforce place preference or cue-reward associations were able to modify behavior in other ways. First, continuous tonic stimulation maintained previously learned cue-reward associations even after they ceased being valid. Second, delivering phasic stimulation either continuously or after choices not previously associated with reward induced mice to make choices that deviated from previously learned associations. In summary, despite the fact that dopaminergic VTA-PFC projections exhibit phasic increases in activity that are time locked to the delivery of rewards, phasic activation of these projections does not necessarily reinforce specific actions. Rather, dopaminergic VTA-PFC activity can control whether mice maintain or deviate from previously learned cue-reward associations. Dopaminergic inputs from ventral tegmental area (VTA) to striatum encode reward prediction errors and reinforce specific actions; however, it is currently unknown whether dopaminergic inputs to prefrontal cortex (PFC) play similar or distinct roles. Here, we used bulk Ca imaging to show that unexpected rewards or reward-predicting cues elicit phasic increases in the activity of dopaminergic VTA-PFC fibers. However, in multiple behavioral paradigms, we failed to observe reinforcing effects after stimulation of these fibers. In these same experiments, we did find that tonic or phasic patterns of stimulation caused mice to maintain or deviate from previously learned cue-reward associations, respectively. Therefore, although they may exhibit similar patterns of activity, dopaminergic inputs to striatum and PFC can elicit divergent behavioral effects.

摘要

腹侧被盖区(VTA)的多巴胺能神经元编码奖励预测误差,并可通过其向纹状体的投射驱动强化学习,但对其向前额叶皮质(PFC)的投射了解较少。在此,我们研究了这些投射,并观察到奖励发放后VTA-PFC纤维光度信号的相位变化。接下来,我们使用条件性位置偏好以及一项任务来研究对这些投射的光遗传学刺激如何影响行为,在该任务中,小鼠学习线索与食物奖励之间的关联,然后利用这些关联做出选择。对多巴胺能VTA-PFC投射的相位或持续性刺激均未引发位置偏好。此外,用VTA-PFC的相位刺激替代食物奖励不足以强化新的线索-奖励关联,也无法维持先前习得的关联。然而,同样未能强化位置偏好或线索-奖励关联的刺激模式能够以其他方式改变行为。首先,持续的持续性刺激即使在先前习得的线索-奖励关联不再有效后仍能维持它们。其次,持续或在先前与奖励无关的选择后给予相位刺激会诱导小鼠做出偏离先前习得关联的选择。总之,尽管多巴胺能VTA-PFC投射的活动在奖励发放时呈现出相位性增加,但这些投射的相位激活不一定会强化特定行为。相反,多巴胺能VTA-PFC活动可以控制小鼠是维持还是偏离先前习得的线索-奖励关联。从腹侧被盖区(VTA)到纹状体的多巴胺能输入编码奖励预测误差并强化特定行为;然而,目前尚不清楚多巴胺能输入到前额叶皮质(PFC)是否发挥类似或不同的作用。在此,我们使用群体钙成像显示,意外奖励或奖励预测线索会引发多巴胺能VTA-PFC纤维活动的相位性增加。然而,在多个行为范式中,我们在刺激这些纤维后未观察到强化作用。在这些相同的实验中,我们确实发现持续性或相位性刺激模式分别导致小鼠维持或偏离先前习得的线索-奖励关联。因此,尽管它们可能表现出相似的活动模式,但多巴胺能输入到纹状体和PFC可引发不同的行为效应。

相似文献

2
Cue and Reward Evoked Dopamine Activity Is Necessary for Maintaining Learned Pavlovian Associations.
J Neurosci. 2021 Jun 9;41(23):5004-5014. doi: 10.1523/JNEUROSCI.2744-20.2021. Epub 2021 Apr 22.
4
5
Activation of Pedunculopontine Glutamate Neurons Is Reinforcing.
J Neurosci. 2017 Jan 4;37(1):38-46. doi: 10.1523/JNEUROSCI.3082-16.2016.
6
Context-Dependent Multiplexing by Individual VTA Dopamine Neurons.
J Neurosci. 2020 Sep 23;40(39):7489-7509. doi: 10.1523/JNEUROSCI.0502-20.2020. Epub 2020 Aug 28.
7
Decreases in Cued Reward Seeking After Reward-Paired Inhibition of Mesolimbic Dopamine.
Neuroscience. 2019 Aug 1;412:259-269. doi: 10.1016/j.neuroscience.2019.04.035. Epub 2019 Apr 25.
8
Dissociable contributions of phasic dopamine activity to reward and prediction.
Cell Rep. 2021 Sep 7;36(10):109684. doi: 10.1016/j.celrep.2021.109684.
9
Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.
Neuroscience. 2016 Oct 1;333:54-64. doi: 10.1016/j.neuroscience.2016.07.006. Epub 2016 Jul 13.

引用本文的文献

1
Immediate glucose signaling transmitted via the vagus nerve in gut-brain neural communication.
iScience. 2025 May 5;28(5):112439. doi: 10.1016/j.isci.2025.112439. eCollection 2025 May 16.
3
Impaired reward sensitivity in Parkinson's depression is unresponsive to dopamine treatment.
Brain. 2025 Jun 3;148(6):2122-2134. doi: 10.1093/brain/awaf098.
4
Prefrontal dopamine activity is critical for rapid threat avoidance learning.
bioRxiv. 2025 Jan 2:2024.05.02.592069. doi: 10.1101/2024.05.02.592069.
6
Divergent subregional information processing in mouse prefrontal cortex during working memory.
Commun Biol. 2024 Oct 1;7(1):1235. doi: 10.1038/s42003-024-06926-8.
7
A chemogenetic approach for dopamine imaging with tunable sensitivity.
Nat Commun. 2024 Jul 2;15(1):5551. doi: 10.1038/s41467-024-49442-3.
10
Encoding of self-initiated actions in axon terminals of the mesocortical pathway.
Neurophotonics. 2024 Jul;11(3):033408. doi: 10.1117/1.NPh.11.3.033408. Epub 2024 May 9.

本文引用的文献

1
Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination.
Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3169-76. doi: 10.1073/pnas.1606098113. Epub 2016 May 16.
2
Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits.
Cell. 2015 Jul 30;162(3):635-47. doi: 10.1016/j.cell.2015.07.014.
3
Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice.
Neuron. 2015 Mar 18;85(6):1332-43. doi: 10.1016/j.neuron.2015.02.019. Epub 2015 Mar 5.
4
Natural neural projection dynamics underlying social behavior.
Cell. 2014 Jun 19;157(7):1535-51. doi: 10.1016/j.cell.2014.05.017.
5
Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex.
Cereb Cortex. 2015 Sep;25(9):2980-7. doi: 10.1093/cercor/bhu096. Epub 2014 May 9.
6
Deep brain optical measurements of cell type-specific neural activity in behaving mice.
Nat Protoc. 2014;9(6):1213-28. doi: 10.1038/nprot.2014.080. Epub 2014 May 1.
7
Prolonged dopamine signalling in striatum signals proximity and value of distant rewards.
Nature. 2013 Aug 29;500(7464):575-9. doi: 10.1038/nature12475. Epub 2013 Aug 4.
8
A causal link between prediction errors, dopamine neurons and learning.
Nat Neurosci. 2013 Jul;16(7):966-73. doi: 10.1038/nn.3413. Epub 2013 May 26.
9
Concurrent activation of striatal direct and indirect pathways during action initiation.
Nature. 2013 Feb 14;494(7436):238-42. doi: 10.1038/nature11846. Epub 2013 Jan 23.
10
Updating dopamine reward signals.
Curr Opin Neurobiol. 2013 Apr;23(2):229-38. doi: 10.1016/j.conb.2012.11.012. Epub 2012 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验