College of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450052, People's Republic of China.
ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9689-97. doi: 10.1021/am502035g. Epub 2014 Jun 6.
Functionalized porous carbon materials with hierarchical structure and developed porosity coming from natural and renewable biomass have been attracting tremendous attention recently. In this work, we present a facile and scalable method to synthesize MnO2 loaded carbonaceous aerogel (MnO2@CA) composites via the hydrothermal carbonaceous (HTC) process. We employ two reaction systems of the mixed metal ion precursors to study the optimal selective adsorption and further reaction of MnO2 precursor on CA. Our experimental results show that the system containing KMnO4 and Na2S2O3·5H2O exhibits better electrochemical properties compared with the reaction system of MnSO4·H2O and (NH4)2S2O8. For the former, the obtained MnO2@CA displays the specific capacitance of 123.5 F·g(-1). The enhanced supercapacitance of MnO2@CA nanocomposites could be ascribed to both electrochemical contributions of the loaded MnO2 nanoparticles and the porous structure of three-dimensional carbonaceous aerogels. This study not only indicates that it is vital for the reaction systems to match with porous carbonaceous materials, but also offers a new fabrication strategy to prepare lightweight and high-performance materials that can be used in energy storage devices.
具有分级结构和发达孔隙率的功能化多孔碳材料源于天然可再生生物质,最近引起了极大的关注。在这项工作中,我们通过水热碳化(HTC)工艺提出了一种简便且可扩展的方法来合成 MnO2 负载碳气凝胶(MnO2@CA)复合材料。我们采用两种混合金属离子前体的反应体系来研究 MnO2 前体在 CA 上的最佳选择性吸附和进一步反应。我们的实验结果表明,与 MnSO4·H2O 和(NH4)2S2O8 的反应体系相比,含有 KMnO4 和 Na2S2O3·5H2O 的体系表现出更好的电化学性能。对于前者,所获得的 MnO2@CA 显示出 123.5 F·g-1 的比电容。MnO2@CA 纳米复合材料增强的超级电容性能可以归因于负载的 MnO2 纳米粒子的电化学贡献和三维碳气凝胶的多孔结构。这项研究不仅表明反应体系与多孔碳材料匹配至关重要,而且还为制备可用于储能设备的轻量级和高性能材料提供了一种新的制造策略。