Suppr超能文献

营养调查“清洁标准”对营养不良患病率和疾病负担估计的影响:二次数据分析。

Effect of nutrition survey 'cleaning criteria' on estimates of malnutrition prevalence and disease burden: secondary data analysis.

机构信息

UCL Clinical Operational Research Unit, Department of Mathematics , London , UK.

UCL Institute for Global Health, Institute of Child Health , London , UK.

出版信息

PeerJ. 2014 May 13;2:e380. doi: 10.7717/peerj.380. eCollection 2014.

Abstract

Tackling childhood malnutrition is a global health priority. A key indicator is the estimated prevalence of malnutrition, measured by nutrition surveys. Most aspects of survey design are standardised, but data 'cleaning criteria' are not. These aim to exclude extreme values which may represent measurement or data-entry errors. The effect of different cleaning criteria on malnutrition prevalence estimates was unknown. We applied five commonly used data cleaning criteria (WHO 2006; EPI-Info; WHO 1995 fixed; WHO 1995 flexible; SMART) to 21 national Demographic and Health Survey datasets. These included a total of 163,228 children, aged 6-59 months. We focused on wasting (low weight-for-height), a key indicator for treatment programmes. Choice of cleaning criteria had a marked effect: SMART were least inclusive, resulting in the lowest reported malnutrition prevalence, while WHO 2006 were most inclusive, resulting in the highest. Across the 21 countries, the proportion of records excluded was 3 to 5 times greater when using SMART compared to WHO 2006 criteria, resulting in differences in the estimated prevalence of total wasting of between 0.5 and 3.8%, and differences in severe wasting of 0.4-3.9%. The magnitude of difference was associated with the standard deviation of the survey sample, a statistic that can reflect both population heterogeneity and data quality. Using these results to estimate case-loads for treatment programmes resulted in large differences for all countries. Wasting prevalence and caseload estimations are strongly influenced by choice of cleaning criterion. Because key policy and programming decisions depend on these statistics, variations in analytical practice could lead to inconsistent and potentially inappropriate implementation of malnutrition treatment programmes. We therefore call for mandatory reporting of cleaning criteria use so that results can be compared and interpreted appropriately. International consensus is urgently needed regarding choice of criteria to improve the comparability of nutrition survey data.

摘要

解决儿童营养不良问题是全球卫生的重点。营养不良的估计流行率是一个关键指标,通过营养调查来衡量。调查设计的大多数方面都是标准化的,但数据“清理标准”并非如此。这些标准旨在排除可能代表测量或数据输入错误的极端值。不同的清理标准对营养不良流行率估计的影响尚不清楚。我们将五种常用的数据清理标准(2006 年世卫组织、EPI-Info、1995 年世卫组织固定、1995 年世卫组织灵活、SMART)应用于 21 个国家的人口与健康调查数据集。这些数据共包括 163228 名 6-59 个月大的儿童。我们重点关注消瘦(低体重与身高的比值),这是治疗方案的一个关键指标。清理标准的选择有显著影响:SMART 标准包容性最小,导致报告的营养不良流行率最低,而 2006 年世卫组织标准包容性最大,导致报告的营养不良流行率最高。在 21 个国家中,与 2006 年世卫组织标准相比,使用 SMART 标准时,排除的记录比例要高出 3 到 5 倍,这导致总消瘦估计患病率的差异在 0.5%到 3.8%之间,严重消瘦的差异在 0.4%到 3.9%之间。差异的大小与调查样本的标准差有关,这一统计量既可以反映人口异质性,也可以反映数据质量。使用这些结果来估计治疗方案的病例数,所有国家的结果都有很大差异。消瘦流行率和病例数估计受到清理标准选择的强烈影响。由于关键的政策和规划决策取决于这些统计数据,分析实践中的差异可能导致营养不良治疗方案的实施不一致和潜在的不适当。因此,我们呼吁强制性报告清理标准的使用情况,以便能够进行适当的比较和解释。迫切需要就标准的选择达成国际共识,以提高营养调查数据的可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/695e/4034601/8c8b67e511fe/peerj-02-380-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验