Suppr超能文献

评估不同类型单受试者实验设计的干预效果:实证说明。

Estimating intervention effects across different types of single-subject experimental designs: empirical illustration.

作者信息

Moeyaert Mariola, Ugille Maaike, Ferron John M, Onghena Patrick, Heyvaert Mieke, Beretvas S Natasha, Van den Noortgate Wim

机构信息

Department of Psychology and Educational Sciences, University of Leuven.

Department of Educational Measurement and Research, University of South Florida.

出版信息

Sch Psychol Q. 2015 Mar;30(1):50-63. doi: 10.1037/spq0000068. Epub 2014 Jun 2.

Abstract

The purpose of this study is to illustrate the multilevel meta-analysis of results from single-subject experimental designs of different types, including AB phase designs, multiple-baseline designs, ABAB reversal designs, and alternating treatment designs. Current methodological work on the meta-analysis of single-subject experimental designs often focuses on combining simple AB phase designs or multiple-baseline designs. We discuss the estimation of the average intervention effect estimate across different types of single-subject experimental designs using several multilevel meta-analytic models. We illustrate the different models using a reanalysis of a meta-analysis of single-subject experimental designs (Heyvaert, Saenen, Maes, & Onghena, in press). The intervention effect estimates using univariate 3-level models differ from those obtained using a multivariate 3-level model that takes the dependence between effect sizes into account. Because different results are obtained and the multivariate model has multiple advantages, including more information and smaller standard errors, we recommend researchers to use the multivariate multilevel model to meta-analyze studies that utilize different single-subject designs.

摘要

本研究的目的是阐述对不同类型单受试者实验设计结果的多水平荟萃分析,这些设计包括AB阶段设计、多基线设计、ABAB反转设计和交替治疗设计。目前关于单受试者实验设计荟萃分析的方法学研究通常集中于合并简单的AB阶段设计或多基线设计。我们讨论了使用几种多水平荟萃分析模型来估计不同类型单受试者实验设计的平均干预效应估计值。我们通过对一项单受试者实验设计荟萃分析(Heyvaert、Saenen、Maes和Onghena,即将发表)进行重新分析来说明不同的模型。使用单变量三级模型得到的干预效应估计值与使用考虑效应量之间依赖性的多变量三级模型得到的估计值不同。由于得到了不同的结果,且多变量模型具有多个优点,包括更多信息和更小的标准误差,我们建议研究人员使用多变量多水平模型对采用不同单受试者设计的研究进行荟萃分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验