Suppr超能文献

小样本设计中的统计分析:使用线性混合效应模型评估干预效果。

Statistical analysis in Small-N Designs: using linear mixed-effects modeling for evaluating intervention effectiveness.

作者信息

Wiley Robert W, Rapp Brenda

机构信息

Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Aphasiology. 2019;33(1):1-30. doi: 10.1080/02687038.2018.1454884. Epub 2018 Mar 21.

Abstract

BACKGROUND

Advances in statistical methods and computing power have led to a renewed interest in addressing the statistical analysis challenges posed by Small-N Designs (SND). Linear mixed-effects modeling (LMEM) is a multiple regression technique that is flexible and suitable for SND and can provide standardized effect sizes and measures of statistical significance.

AIMS

Our primary goals are to: 1) explain LMEM at the conceptual level, situating it in the context of treatment studies, and 2) provide practical guidance for implementing LMEM in repeated measures SND.

METHODS & PROCEDURES: We illustrate an LMEM analysis, presenting data from a longitudinal training study of five individuals with acquired dysgraphia, analyzing both binomial (accuracy) and continuous (reaction time) repeated measurements.

OUTCOMES & RESULTS: The LMEM analysis reveals that both spelling accuracy and reaction time improved and, for accuracy, improved significantly more quickly under a training schedule with distributed, compared to clustered, practice. We present guidance on obtaining and interpreting various effect sizes and measures of statistical significance from LMEM, and include a simulation study comparing two -value methods for generalized LMEM.

CONCLUSION

We provide a strong case for the application of LMEM to the analysis of training studies as a preferable alternative to visual analysis or other statistical techniques. When applied to a treatment dataset, the evidence supports that the approach holds up under the extreme conditions of small numbers of individuals, with repeated measures training data for both continuous (reaction time) and binomially distributed (accuracy) dependent measures. The approach provides standardized measures of effect sizes that are obtained through readily available and well-supported statistical packages, and provides statistically rigorous estimates of the expected average effect size of training effects, taking into account variability across both items and individuals.

摘要

背景

统计方法和计算能力的进步使得人们重新关注解决小样本设计(SND)带来的统计分析挑战。线性混合效应建模(LMEM)是一种多元回归技术,它灵活且适用于小样本设计,能够提供标准化效应量和统计显著性度量。

目的

我们的主要目标是:1)在概念层面解释线性混合效应建模,将其置于治疗研究的背景中;2)为在重复测量小样本设计中实施线性混合效应建模提供实用指导。

方法与步骤

我们展示了一个线性混合效应建模分析,呈现了一项针对五名获得性书写障碍个体的纵向训练研究的数据,分析了二项式(准确性)和连续性(反应时间)重复测量数据。

结果

线性混合效应建模分析表明,拼写准确性和反应时间均有所提高,而且就准确性而言,与集中练习相比,在分散练习的训练计划下提高得明显更快。我们提供了关于从线性混合效应建模中获取和解释各种效应量及统计显著性度量的指导,并纳入了一项模拟研究,比较了广义线性混合效应建模的两种p值方法。

结论

我们有力地论证了将线性混合效应建模应用于训练研究分析,作为视觉分析或其他统计技术的更优替代方法。当应用于治疗数据集时,有证据支持该方法在个体数量极少的极端条件下依然适用,同时具备针对连续性(反应时间)和二项分布(准确性)相关测量的重复测量训练数据。该方法通过易于获取且有充分支持的统计软件包提供标准化的效应量度量,并在考虑项目和个体变异性的情况下,对训练效果的预期平均效应量进行严格的统计估计。

相似文献

1
Statistical analysis in Small-N Designs: using linear mixed-effects modeling for evaluating intervention effectiveness.
Aphasiology. 2019;33(1):1-30. doi: 10.1080/02687038.2018.1454884. Epub 2018 Mar 21.
2
Comparing Generalized Estimating Equation and Linear Mixed Effects Model for Estimating Marginal Association with Bivariate Continuous Outcomes.
Ophthalmic Epidemiol. 2023 Jun;30(3):307-316. doi: 10.1080/09286586.2022.2098984. Epub 2022 Jul 15.
3
Linear Mixed-Model Analysis Better Captures Subcomponents of Attention in a Small Sample Size of Persons With Aphasia.
Am J Speech Lang Pathol. 2023 Mar 9;32(2):748-761. doi: 10.1044/2022_AJSLP-22-00119. Epub 2023 Feb 27.
6
Repeated Measures Designs and Analysis of Longitudinal Data: If at First You Do Not Succeed-Try, Try Again.
Anesth Analg. 2018 Aug;127(2):569-575. doi: 10.1213/ANE.0000000000003511.
7
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
10
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.

引用本文的文献

3
Evolution of Word Production Errors after Typicality-Based Semantic Naming Treatment in Individuals with Aphasia.
Aphasiology. 2025 Jun;39(6):772-797. doi: 10.1080/02687038.2024.2377325. Epub 2024 Jul 18.
5
Longitudinal recovery and self-efficacy in first-episode schizophrenia: insights from a 10-year follow-up study.
Front Psychiatry. 2025 Jun 16;16:1588349. doi: 10.3389/fpsyt.2025.1588349. eCollection 2025.
10

本文引用的文献

2
Towards a Theory of Learning for Naming Rehabilitation: Retrieval Practice and Spacing Effects.
J Speech Lang Hear Res. 2016 Oct 1;59(5):1111-1122. doi: 10.1044/2016_JSLHR-L-15-0303.
3
Comparing a single case to a control group - Applying linear mixed effects models to repeated measures data.
Cortex. 2015 Oct;71:148-59. doi: 10.1016/j.cortex.2015.06.020. Epub 2015 Jul 2.
4
The Power of Testing Memory: Basic Research and Implications for Educational Practice.
Perspect Psychol Sci. 2006 Sep;1(3):181-210. doi: 10.1111/j.1745-6916.2006.00012.x.
5
A standardized mean difference effect size for single case designs.
Res Synth Methods. 2012 Sep;3(3):224-39. doi: 10.1002/jrsm.1052. Epub 2012 Aug 14.
7
8
Single case experimental designs: introduction to a special issue of Neuropsychological Rehabilitation.
Neuropsychol Rehabil. 2014;24(3-4):305-14. doi: 10.1080/09602011.2014.903198. Epub 2014 Apr 25.
9
Simulation modelling analysis for small sets of single-subject data collected over time.
Neuropsychol Rehabil. 2014;24(3-4):492-506. doi: 10.1080/09602011.2014.895390. Epub 2014 Mar 19.
10
From a single-level analysis to a multilevel analysis of single-case experimental designs.
J Sch Psychol. 2014 Apr;52(2):191-211. doi: 10.1016/j.jsp.2013.11.003. Epub 2013 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验