Suppr超能文献

儿科人群行政健康数据的验证:一项范围综述

Validation of administrative health data for the pediatric population: a scoping review.

作者信息

Shiff Natalie J, Jama Sadia, Boden Catherine, Lix Lisa M

机构信息

Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, SK S7N 0W8, Saskatoon, Canada.

出版信息

BMC Health Serv Res. 2014 May 22;14:236. doi: 10.1186/1472-6963-14-236.

Abstract

BACKGROUND

The purpose of this research was to perform a scoping review of published literature on the validity of administrative health data for ascertaining health conditions in the pediatric population (≤20 years).

METHODS

A comprehensive search of OVID Medline (1946 - present), CINAHL (1937 - present) and EMBASE (1947 - present) was conducted. Characteristics of validation studies that were abstracted included the study population, health condition, topic of the validation (e.g., single diagnosis code versus case-finding algorithm), administrative and validation data sources. Inter-rater agreement was measured using Cohen's κ. Extracted data were analyzed using descriptive statistics.

RESULTS

A total of 37 articles met the study inclusion criteria. Cohen's κ for study inclusion/exclusion and data abstraction was 0.88 and 0.97, respectively. Most studies validated administrative data from the USA (43.2%) and Canada (24.3%), and focused on inpatient records (67.6%). Case-finding algorithms (56.7%) were more frequently validated than diagnoses codes alone (37.8%). Five conditions were validated in more than one study: diabetes mellitus, inflammatory bowel disease, asthma, rotavirus infection, and tuberculosis.

CONCLUSIONS

This scoping review identified a number of gaps in the validation of administrative health data for pediatric populations, including limited investigation of outpatient populations and older pediatric age groups.

摘要

背景

本研究的目的是对已发表的关于行政健康数据在确定儿科人群(≤20岁)健康状况方面有效性的文献进行范围综述。

方法

对OVID Medline(1946年至今)、CINAHL(1937年至今)和EMBASE(1947年至今)进行了全面检索。提取的验证研究特征包括研究人群、健康状况、验证主题(如单一诊断代码与病例发现算法)、行政和验证数据源。使用Cohen's κ测量评分者间一致性。使用描述性统计分析提取的数据。

结果

共有37篇文章符合研究纳入标准。纳入/排除研究和数据提取的Cohen's κ分别为0.88和0.97。大多数研究验证了来自美国(43.2%)和加拿大(24.3%)的行政数据,并侧重于住院记录(67.6%)。病例发现算法(56.7%)比单独的诊断代码(37.8%)更常被验证。超过一项研究验证了五种疾病:糖尿病、炎症性肠病、哮喘、轮状病毒感染和结核病。

结论

本范围综述确定了儿科人群行政健康数据验证方面的一些差距,包括对门诊人群和较大儿科年龄组的研究有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea2/4057929/ee7f2e6e41c8/1472-6963-14-236-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验