Suppr超能文献

谷氨酸棒杆菌和大肠杆菌重组菌株合成反式-4-羟基脯氨酸

Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli.

作者信息

Yi Yulan, Sheng Huakai, Li Zhimin, Ye Qin

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

出版信息

BMC Biotechnol. 2014 May 19;14:44. doi: 10.1186/1472-6750-14-44.

Abstract

BACKGROUND

Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until now the production of trans-Hyp is mainly from the acid hydrolysis of collagen. Due to the increasing environmental concerns on those severe chemical processes and complicated downstream separation, it is essential to explore some environment-friendly processes such as constructing new recombinant strains to develop efficient process for trans-Hyp production.

RESULT

In this study, the genes of trans-proline 4-hydroxylase (trans-P4H) from diverse resources were cloned and expressed in Corynebacterium glutamicum and Escherichia coli, respectively. The trans-Hyp production by these recombinant strains was investigated. The results showed that all the genes from different resources had been expressed actively. Both the recombinant C. glutamicum and E. coli strains could produce trans-Hyp in the absence of proline and 2-oxoglutarate.

CONCLUSIONS

The whole cell microbial systems for trans-Hyp production have been successfully constructed by introducing trans-P4H into C. glutamicum and E. coli. Although the highest yield was obtained in recombinant E. coli, using recombinant C. glutamicum strains to produce trans-Hyp was a new attempt.

摘要

背景

反式-4-羟基-L-脯氨酸(反式-Hyp)是羟脯氨酸(Hyp)的异构体之一,是许多药物生产中有用的手性结构单元。尽管微生物中存在一些反式-Hyp的天然生物合成途径,但其产量仍然过低,无法扩大规模用于工业应用。到目前为止,反式-Hyp的生产主要来自胶原蛋白的酸水解。由于对这些苛刻化学过程和复杂下游分离的环境问题日益关注,探索一些环境友好的过程,如构建新的重组菌株以开发高效的反式-Hyp生产工艺至关重要。

结果

在本研究中,分别从不同来源克隆了反式脯氨酸4-羟化酶(反式-P4H)基因,并在谷氨酸棒杆菌和大肠杆菌中表达。研究了这些重组菌株生产反式-Hyp的情况。结果表明,来自不同来源的所有基因均已积极表达。重组谷氨酸棒杆菌和大肠杆菌菌株在无脯氨酸和2-氧代戊二酸的情况下均可产生反式-Hyp。

结论

通过将反式-P4H引入谷氨酸棒杆菌和大肠杆菌,成功构建了用于生产反式-Hyp的全细胞微生物系统。尽管重组大肠杆菌的产量最高,但使用重组谷氨酸棒杆菌菌株生产反式-Hyp是一种新的尝试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc5/4055215/9033f498a031/1472-6750-14-44-1.jpg

相似文献

2
Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli.
Lett Appl Microbiol. 2018 May;66(5):400-408. doi: 10.1111/lam.12864. Epub 2018 Mar 9.
5
Ectoine hydroxylase displays selective trans-3-hydroxylation activity towards L-proline.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5689-5698. doi: 10.1007/s00253-019-09868-y. Epub 2019 May 20.
6
Isolation of a Bacillus cereus strain HBL-AI and its application for production of Trans-4-hydroxy-l-proline.
Lett Appl Microbiol. 2021 Jan;72(1):53-59. doi: 10.1111/lam.13388. Epub 2020 Oct 5.
9
Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production.
Microb Biotechnol. 2021 Mar;14(2):392-402. doi: 10.1111/1751-7915.13573. Epub 2020 May 12.
10
Enzymatic production of trans-4-hydroxy-l-proline by proline 4-hydroxylase.
Microb Biotechnol. 2021 Mar;14(2):479-487. doi: 10.1111/1751-7915.13616. Epub 2020 Jul 3.

引用本文的文献

5
Production of l-glutamate family amino acids in : Physiological mechanism, genetic modulation, and prospects.
Synth Syst Biotechnol. 2021 Sep 20;6(4):302-325. doi: 10.1016/j.synbio.2021.09.005. eCollection 2021 Dec.
6
7
Metabolic engineering strategy for synthetizing trans-4-hydroxy-L-proline in microorganisms.
Microb Cell Fact. 2021 Apr 21;20(1):87. doi: 10.1186/s12934-021-01579-2.
8
Enzymatic production of trans-4-hydroxy-l-proline by proline 4-hydroxylase.
Microb Biotechnol. 2021 Mar;14(2):479-487. doi: 10.1111/1751-7915.13616. Epub 2020 Jul 3.
10
Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production.
Microb Biotechnol. 2021 Mar;14(2):392-402. doi: 10.1111/1751-7915.13573. Epub 2020 May 12.

本文引用的文献

1
Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
BMC Biotechnol. 2013 Jun 1;13:47. doi: 10.1186/1472-6750-13-47.
2
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Bioresour Technol. 2013 Oct;145:254-8. doi: 10.1016/j.biortech.2013.02.053. Epub 2013 Mar 1.
3
Proline availability regulates proline-4-hydroxylase synthesis and substrate uptake in proline-hydroxylating recombinant Escherichia coli.
Appl Environ Microbiol. 2013 May;79(9):3091-100. doi: 10.1128/AEM.03640-12. Epub 2013 Mar 1.
4
Codon optimization for high level expression of human bone morphogenetic protein-2 in Escherichia coli.
Protein Expr Purif. 2012 Aug;84(2):188-94. doi: 10.1016/j.pep.2012.05.010. Epub 2012 Jun 9.
5
Production of N-acetyl cis-4-hydroxy-L-proline by the yeast N-acetyltransferase Mpr1.
J Biosci Bioeng. 2012 Aug;114(2):160-5. doi: 10.1016/j.jbiosc.2012.03.014. Epub 2012 May 10.
6
Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development.
Curr Opin Biotechnol. 2012 Oct;23(5):718-26. doi: 10.1016/j.copbio.2011.12.025. Epub 2012 Jan 13.
7
Prolyl 4-hydroxylase.
Crit Rev Biochem Mol Biol. 2010 Apr;45(2):106-24. doi: 10.3109/10409231003627991.
8
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
Antioxid Redox Signal. 2010 Aug 1;13(3):349-94. doi: 10.1089/ars.2009.2931.
9
Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR.
Appl Microbiol Biotechnol. 2010 Jan;85(3):713-20. doi: 10.1007/s00253-009-2206-2. Epub 2009 Aug 26.
10
Cloning, site-directed mutagenesis and expression of cathepsin L-like cysteine protease from Uronema marinum (Ciliophora: Scuticociliatida).
Mol Biochem Parasitol. 2007 Dec;156(2):191-8. doi: 10.1016/j.molbiopara.2007.07.021. Epub 2007 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验