Suppr超能文献

基于多模态无线传感器网络的真实家庭中多居民环境辅助生活。

Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.

作者信息

Tunca Can, Alemdar Hande, Ertan Halil, Incel Ozlem Durmaz, Ersoy Cem

机构信息

NETLAB, Computer Networks Research Laboratory, Department of Computer Engineering, Bogazici University, Bebek, Istanbul 34342, Turkey.

PeraLab, Pervasive Computing Laboratory, Department of Computer Engineering, GalatasarayUniversity, Ortakoy, Istanbul 34349, Turkey.

出版信息

Sensors (Basel). 2014 May 30;14(6):9692-719. doi: 10.3390/s140609692.

Abstract

Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

摘要

利用无线传感器网络(WSN)在家庭环境中进行人类活动识别和行为监测,为环境辅助生活(AAL)应用提供了巨大潜力,涵盖从健康与福祉监测到资源消耗监测等多个方面。然而,由于传感器设备的局限性、无线通信中的挑战以及处理大量传感器数据以识别复杂人类活动的挑战,基于WSN的AAL系统未能有效融入家庭环境。此外,鉴于传感器类型和活动的多样性,在部署中选择最合适的传感器集是一项重要任务。为了研究并提出应对此类挑战的解决方案,我们引入了一种适用于多居民家庭的基于WSN的多模态AAL系统。特别地,我们关注系统架构的细节,包括传感器选择、部署、组网和数据收集等挑战,并为有效AAL系统的设计和部署提供指导方针。我们还展示了我们进行的实地研究细节,该研究使用了部署在两个不同的有多个居民的真实家庭环境中的系统。借助这些系统,我们能够从多个家庭收集环境传感器数据。这些数据可用于评估居民的福祉,并识别与日常惯例的偏差,而这些偏差可能是健康问题的指标。最后,为了详细阐述所提出的AAL系统的可能应用,并举例说明处理收集到的数据的方向,我们提供了几个人类活动推理实验的结果,以及如何解释这些结果的示例。我们相信,这项工作中分享的经验将有助于加速基于WSN的AAL系统在家庭环境中的接受度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c520/4118408/d487330f1179/sensors-14-09692f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验