Suppr超能文献

通过脑电图的直观预处理改进纺锤波检测。

Improved spindle detection through intuitive pre-processing of electroencephalogram.

作者信息

Jaleel Abdul, Ahmed Beena, Tafreshi Reza, Boivin Diane B, Streletz Leopold, Haddad Naim

机构信息

Texas A&M University at Qatar, Doha, Qatar.

Texas A&M University at Qatar, Doha, Qatar.

出版信息

J Neurosci Methods. 2014 Aug 15;233:1-12. doi: 10.1016/j.jneumeth.2014.05.009. Epub 2014 Jun 2.

Abstract

BACKGROUND

Numerous signal processing techniques have been proposed for automated spindle detection on EEG recordings with varying degrees of success. While the latest techniques usually introduce computational complexity and/or vagueness, the conventional techniques attempted in literature have led to poor results. This study presents a spindle detection approach which relies on intuitive pre-processing of the EEG prior to spindle detection, thus resulting in higher accuracy even with standard techniques.

NEW METHOD

The pre-processing techniques proposed include applying the derivative operator on the EEG, suppressing the background activity using Empirical Mode Decomposition and shortlisting candidate EEG segments based on eye-movements on the EOG.

RESULTS/COMPARISON: Results show that standard signal processing tools such as wavelets and Fourier transforms perform much better when coupled with apt pre-processing techniques. The developed algorithm also relies on data-driven thresholds ensuring its adaptability to inter-subject and inter-scorer variability. When tested on sample EEG segments scored by multiple experts, the algorithm identified spindles with average sensitivities of 96.14 and 92.85% and specificities of 87.59 and 84.85% for Fourier transform and wavelets respectively. These results are found to be on par with results obtained by other recent studies in this area.

摘要

背景

已经提出了许多信号处理技术用于在脑电图记录上自动检测纺锤波,取得了不同程度的成功。虽然最新技术通常会带来计算复杂性和/或模糊性,但文献中尝试的传统技术效果不佳。本研究提出了一种纺锤波检测方法,该方法在纺锤波检测之前依赖于对脑电图进行直观的预处理,因此即使使用标准技术也能获得更高的准确性。

新方法

提出的预处理技术包括对脑电图应用导数算子、使用经验模态分解抑制背景活动以及基于眼电图上的眼动筛选候选脑电图片段。

结果/比较:结果表明,诸如小波变换和傅里叶变换等标准信号处理工具在与适当的预处理技术结合使用时表现得更好。所开发的算法还依赖于数据驱动的阈值,确保其对个体间和评分者间变异性的适应性。当在由多位专家评分的样本脑电图片段上进行测试时,该算法对傅里叶变换和小波变换分别识别出纺锤波的平均敏感度为96.14%和92.85%,特异性为87.5%,%和84.85%。这些结果与该领域其他近期研究获得的结果相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验