Suppr超能文献

基于同步挤压的增强型自动睡眠纺锤波检测算法

Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.

作者信息

Kabir Muammar M, Tafreshi Reza, Boivin Diane B, Haddad Naim

机构信息

Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA,

出版信息

Med Biol Eng Comput. 2015 Jul;53(7):635-44. doi: 10.1007/s11517-015-1265-z. Epub 2015 Mar 17.

Abstract

Detection of sleep spindles is of major importance in the field of sleep research. However, manual scoring of spindles on prolonged recordings is very laborious and time-consuming. In this paper, we introduce a new algorithm based on synchrosqueezing transform for detection of sleep spindles. Synchrosqueezing is a powerful time-frequency analysis tool that provides precise frequency representation of a multicomponent signal through mode decomposition. Subsequently, the proposed algorithm extracts and compares the basic features of a spindle-like activity with its surrounding, thus adapting to an expert's visual criteria for spindle scoring. The performance of the algorithm was assessed against the spindle scoring of one expert on continuous electroencephalogram sleep recordings from two subjects. Through appropriate choice of synchrosqueezing parameters, our proposed algorithm obtained a maximum sensitivity of 96.5% with 98.1% specificity. Compared to previously published works, our algorithm has shown improved performance by enhancing the quality of sleep spindle detection.

摘要

睡眠纺锤波的检测在睡眠研究领域至关重要。然而,对长时间记录的纺锤波进行人工评分非常费力且耗时。在本文中,我们介绍一种基于同步挤压变换的睡眠纺锤波检测新算法。同步挤压是一种强大的时频分析工具,通过模式分解为多分量信号提供精确的频率表示。随后,该算法提取并比较纺锤样活动与其周围环境的基本特征,从而符合专家对纺锤波评分的视觉标准。针对一名专家对两名受试者的连续脑电图睡眠记录进行的纺锤波评分,评估了该算法的性能。通过适当选择同步挤压参数,我们提出的算法获得了96.5%的最大灵敏度和98.1%的特异性。与先前发表的研究相比,我们的算法通过提高睡眠纺锤波检测质量,表现出了更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验