Suppr超能文献

纵向分析中的潜在时变因素:一种用于心率的线性混合隐马尔可夫模型

Latent time-varying factors in longitudinal analysis: a linear mixed hidden Markov model for heart rates.

作者信息

Lagona Francesco, Jdanov Dmitri, Shkolnikova Maria

机构信息

University of Roma Tre, Rome, Italy; Max Planck Institute for Demographic Research, Rostock, Germany.

出版信息

Stat Med. 2014 Oct 15;33(23):4116-34. doi: 10.1002/sim.6220. Epub 2014 Jun 2.

Abstract

Longitudinal data are often segmented by unobserved time-varying factors, which introduce latent heterogeneity at the observation level, in addition to heterogeneity across subjects. We account for this latent structure by a linear mixed hidden Markov model. It integrates subject-specific random effects and Markovian sequences of time-varying effects in the linear predictor. We propose an expectationŰ-maximization algorithm for maximum likelihood estimation, based on data augmentation. It reduces to the iterative maximization of the expected value of a complete likelihood function, derived from an augmented dataset with case weights, alternated with weights updating. In a case study of the Survey on Stress Aging and Health in Russia, the model is exploited to estimate the influence of the observed covariates under unobserved time-varying factors, which affect the cardiovascular activity of each subject during the observation period.

摘要

纵向数据通常会被未观察到的随时间变化的因素分割,这些因素除了会导致个体间的异质性外,还会在观测层面引入潜在的异质性。我们通过线性混合隐马尔可夫模型来考虑这种潜在结构。该模型在线性预测器中整合了个体特定的随机效应和随时间变化效应的马尔可夫序列。我们基于数据增强提出了一种期望最大化算法用于最大似然估计。它简化为对一个完整似然函数的期望值进行迭代最大化,该似然函数来自一个带有病例权重的扩充数据集,同时交替进行权重更新。在俄罗斯压力、衰老与健康调查的案例研究中,该模型被用于估计在未观察到的随时间变化因素下观测协变量的影响,这些因素在观测期内影响每个个体的心血管活动。

相似文献

7
A joint model for longitudinal and survival data based on an AR(1) latent process.基于 AR(1)潜过程的纵向和生存数据联合模型。
Stat Methods Med Res. 2018 May;27(5):1285-1311. doi: 10.1177/0962280216659895. Epub 2016 Sep 1.
10
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Biometrics. 2010 Sep;66(3):753-62. doi: 10.1111/j.1541-0420.2009.01338.x.

本文引用的文献

4
Gaussian mixture model of heart rate variability.心率变异性的高斯混合模型。
PLoS One. 2012;7(5):e37731. doi: 10.1371/journal.pone.0037731. Epub 2012 May 30.
7
Combining Mixture Components for Clustering.组合混合成分用于聚类。
J Comput Graph Stat. 2010 Jun 1;9(2):332-353. doi: 10.1198/jcgs.2010.08111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验