Suppr超能文献

一种用于具有协变量的混合潜在马尔可夫模型中信息性失访的离散时间事件史方法。

A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates.

作者信息

Bartolucci Francesco, Farcomeni Alessio

机构信息

Department of Economics, University of Perugia (IT), Perugia, Italy.

Department of Public Health and Infectious Diseases, Sapienza University of Rome (IT), Rome, Italy.

出版信息

Biometrics. 2015 Mar;71(1):80-89. doi: 10.1111/biom.12224. Epub 2014 Sep 16.

Abstract

Mixed latent Markov (MLM) models represent an important tool of analysis of longitudinal data when response variables are affected by time-fixed and time-varying unobserved heterogeneity, in which the latter is accounted for by a hidden Markov chain. In order to avoid bias when using a model of this type in the presence of informative drop-out, we propose an event-history (EH) extension of the latent Markov approach that may be used with multivariate longitudinal data, in which one or more outcomes of a different nature are observed at each time occasion. The EH component of the resulting model is referred to the interval-censored drop-out, and bias in MLM modeling is avoided by correlated random effects, included in the different model components, which follow common latent distributions. In order to perform maximum likelihood estimation of the proposed model by the expectation-maximization algorithm, we extend the usual forward-backward recursions of Baum and Welch. The algorithm has the same complexity as the one adopted in cases of non-informative drop-out. We illustrate the proposed approach through simulations and an application based on data coming from a medical study about primary biliary cirrhosis in which there are two outcomes of interest, one continuous and the other binary.

摘要

当响应变量受到固定时间和随时间变化的未观察到的异质性影响时,混合潜在马尔可夫(MLM)模型是分析纵向数据的重要工具,其中后者由隐藏马尔可夫链来解释。为了在存在信息性缺失的情况下使用此类模型时避免偏差,我们提出了潜在马尔可夫方法的事件史(EH)扩展,它可用于多变量纵向数据,即在每个时间点观察到一个或多个不同性质的结果。所得模型的EH部分涉及区间删失,并且通过包含在不同模型组件中的相关随机效应来避免MLM建模中的偏差,这些随机效应遵循共同的潜在分布。为了通过期望最大化算法对所提出的模型进行最大似然估计,我们扩展了Baum和Welch通常的前向-后向递归。该算法与非信息性缺失情况下采用的算法具有相同的复杂度。我们通过模拟以及基于一项关于原发性胆汁性肝硬化的医学研究数据的应用来说明所提出的方法,该研究中有两个感兴趣的结果,一个是连续的,另一个是二元的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验