Department of Economics, University of Perugia, Perugia, Italy.
Stat Methods Med Res. 2018 May;27(5):1285-1311. doi: 10.1177/0962280216659895. Epub 2016 Sep 1.
A critical problem in repeated measurement studies is the occurrence of nonignorable missing observations. A common approach to deal with this problem is joint modeling the longitudinal and survival processes for each individual on the basis of a random effect that is usually assumed to be time constant. We relax this hypothesis by introducing time-varying subject-specific random effects that follow a first-order autoregressive process, AR(1). We also adopt a generalized linear model formulation to accommodate for different types of longitudinal response (i.e. continuous, binary, count) and we consider some extended cases, such as counts with excess of zeros and multivariate outcomes at each time occasion. Estimation of the parameters of the resulting joint model is based on the maximization of the likelihood computed by a recursion developed in the hidden Markov literature. This maximization is performed on the basis of a quasi-Newton algorithm that also provides the information matrix and then standard errors for the parameter estimates. The proposed approach is illustrated through a Monte Carlo simulation study and the analysis of certain medical datasets.
在重复测量研究中,一个关键问题是不可忽略的缺失观测值的出现。处理这个问题的一种常见方法是基于随机效应,对每个个体的纵向和生存过程进行联合建模,通常假设该随机效应是时间不变的。我们通过引入遵循一阶自回归过程(AR(1))的时变个体特定随机效应来放松这一假设。我们还采用广义线性模型公式来适应不同类型的纵向响应(即连续、二项式、计数),并考虑了一些扩展情况,如每次时间点的零过多计数和多元结果。通过在隐藏马尔可夫文献中开发的递归计算的似然最大化来估计联合模型的参数。该最大化是基于拟牛顿算法完成的,该算法还提供了信息矩阵,然后是参数估计的标准误差。通过蒙特卡罗模拟研究和某些医学数据集的分析说明了所提出的方法。