Howard Hughes Medical Institute andDepartment of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;Department of Systems Biology, Harvard Medical School, Boston, MA 02446;
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;Department of Genetics, Harvard Medical School, Boston, MA 02446;
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8985-90. doi: 10.1073/pnas.1400514111. Epub 2014 Jun 2.
The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.
线粒体钙单向转运蛋白是一种高度选择性的钙离子通道,广泛分布于真核生物中,但在酵母酿酒酵母中缺失。最近已经鉴定出人单向转运蛋白全复合物(uniplex)的分子组成部分。uniplex 由三个跨膜亚基——线粒体钙单向转运蛋白(MCU)、其同源物 MCUb 和必需的 MCU 调节蛋白(EMRE)——以及两个可溶性调节亚基——MICU1 和其同源物 MICU2 组成。体内单向转运蛋白活性所需的最小组成部分尚不清楚。在这里,我们考虑粘菌变形虫(Dd),一种后生动物和真菌的变形动物群的外群成员,并表明它具有高度简化的单向转运蛋白机制。我们表明,D. discoideum 线粒体表现出与单向转运蛋白活性相容的膜电位依赖性钙摄取,并且表达 DdMCU 可补充人类细胞中缺乏 MCU 或 EMRE 时的线粒体钙摄取缺陷。此外,在酵母中单独表达 DdMCU 足以重建线粒体钙单向转运蛋白活性。在建立酵母作为体内重建系统后,我们重建了人类单向转运蛋白。我们表明,MCU 和 EMRE 的共表达足以产生单向转运蛋白活性,而单独表达 MCU 则不足以产生。我们的工作确立了酵母作为单向转运蛋白的强大体内重建系统。使用该系统,我们证实 MCU 是孔形成亚基,确定了对于后生动物和非后生动物单向转运蛋白活性足够的最小遗传元件,并为单向转运蛋白机制的进化提供了有价值的见解。