Suppr超能文献

解析铜绿假单胞菌中形成二硫键的机制。

Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.

机构信息

WELBIO, Brussels, Belgium.

出版信息

mBio. 2013 Dec 10;4(6):e00912-13. doi: 10.1128/mBio.00912-13.

Abstract

UNLABELLED

Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors.

IMPORTANCE

The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics active against this bacterium. The pathogenic power of P. aeruginosa is mediated by an arsenal of extracellular virulence factors, most of which are stabilized by disulfide bonds. Thus, targeting the machinery that introduces disulfide bonds appears to be a promising strategy to combat P. aeruginosa. Here, we unraveled the oxidative protein folding system of P. aeruginosa in full detail. The system uniquely consists of two membrane proteins that generate disulfide bonds de novo to deliver them to P. aeruginosa DsbA1 (PaDsbA1), a soluble oxidoreductase. PaDsbA1 in turn donates disulfide bonds to secreted proteins, including virulence factors. Disruption of the disulfide bond formation machinery dramatically decreases P. aeruginosa virulence, confirming that disulfide formation systems are valid targets for the design of antimicrobial drugs.

摘要

未加标签

许多细菌毒力因子的折叠都需要二硫键的形成。然而,尽管大肠杆菌的二硫键形成系统得到了很好的描述,但对于致病性细菌中氧化折叠蛋白质的途径知之甚少。在这里,我们详细阐述了在人类病原体铜绿假单胞菌的周质中引入二硫键的途径。铜绿假单胞菌的基因组独特地编码了两种 DsbA 蛋白(铜绿假单胞菌 DsbA1[PaDsbA1]和 PaDsbA2)和两种 DsbB 蛋白(PaDsbB1 和 PaDsbB2)。我们发现,作为分泌蛋白中二硫键的主要供体,PaDsbA1 在体内被 PaDsbB1 和 PaDsbB2 两种蛋白都保持氧化状态。该途径的体外重建证实,PaDsbB1 和 PaDsbB2 都可以将电子从 PaDsbA1 转移到膜结合的醌上。因此,缺失铜绿假单胞菌 dsbB1(PadsbB1)和 PadsbB2 两者都需要防止几种铜绿假单胞菌毒力因子的折叠,并导致致病性显著降低。使用高通量蛋白质组学方法,我们还分析了 PadsbA1 缺失对铜绿假单胞菌全局周质蛋白质组的影响,这使我们能够鉴定出 20 多种这种主要氧化还原酶的新潜在底物。最后,我们报告了 PaDsbA2 的生化和结构特征,PaDsbA2 是一种高度氧化的氧化还原酶,似乎是在特定条件下表达的。通过全面剖析铜绿假单胞菌中二硫键引入的机制,我们的工作为设计新型抗菌分子开辟了道路,这些分子能够通过防止其毒力因子库的正确组装来破坏这种病原体。

意义

人类病原体铜绿假单胞菌会导致免疫功能低下和囊性纤维化患者的生命受到威胁的感染。所有现有抗菌药物都耐药的铜绿假单胞菌菌株的出现,迫切需要开发针对这种细菌的新型抗生素。铜绿假单胞菌的致病能力是由一系列细胞外毒力因子介导的,其中大多数毒力因子都通过二硫键稳定。因此,针对引入二硫键的机制似乎是对抗铜绿假单胞菌的一种很有前途的策略。在这里,我们详细阐述了铜绿假单胞菌的氧化蛋白折叠系统。该系统独特地由两种膜蛋白组成,它们从头生成二硫键,将其传递给铜绿假单胞菌 DsbA1(PaDsbA1),一种可溶性氧化还原酶。PaDsbA1 反过来又将二硫键捐赠给分泌蛋白,包括毒力因子。二硫键形成机制的破坏极大地降低了铜绿假单胞菌的毒力,证实了二硫键形成系统是设计抗菌药物的有效靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/230c/3870256/535e4e72a601/mbo0061316860001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验