Rishi Muhammad Adeel, Kashyap Rahul, Wilson Gregory, Hocker Sara
Multidisciplinary Epidemiological and Translational Research in Critical Care Medicine (METRIC), Mayo Clinic, Rochester, MN, USA.
Division of Critical Care Neurology, Mayo Clinic, Rochester, MN, USA.
BMC Anesthesiol. 2014 May 23;14:41. doi: 10.1186/1471-2253-14-41. eCollection 2014.
Development and validation of automated electronic medical record (EMR) search strategies is important in identifying extubation failure in the intensive care unit (ICU). We developed and validated an automated search algorithm (strategy) for extubation failure in critically ill patients.
The EMR search algorithm was created through sequential steps with keywords applied to an institutional EMR database. The search strategy was derived retrospectively through secondary analysis of a 100-patient subset from the 978 patient cohort admitted to a neurological ICU from January 1, 2002, through December 31, 2011(derivation subset). It was, then, validated against an additional 100-patient subset (validation subset). Sensitivity, specificity, negative and positive predictive values of the automated search algorithm were compared with a manual medical record review (the reference standard) for data extraction of extubation failure.
In the derivation subset of 100 random patients, the initial automated electronic search strategy achieved a sensitivity of 85% (95% CI, 56%-97%) and a specificity of 95% (95% CI, 87%-98%). With refinements in the search algorithm, the final sensitivity was 93% (95% CI, 64%-99%) and specificity increased to 100% (95% CI, 95%-100%) in this subset. In validation of the algorithm through a separate 100 random patient subset, the reported sensitivity and specificity were 94% (95% CI, 69%-99%) and 98% (95% CI, 92%-99%) respectively.
Use of electronic search algorithms allows for correct extraction of extubation failure in the ICU, with high degrees of sensitivity and specificity. Such search algorithms are a reliable alternative to manual chart review for identification of extubation failure.
开发并验证自动电子病历(EMR)搜索策略对于识别重症监护病房(ICU)中的拔管失败情况至关重要。我们开发并验证了一种用于危重症患者拔管失败的自动搜索算法(策略)。
通过将关键词应用于机构EMR数据库的连续步骤创建EMR搜索算法。该搜索策略是通过对2002年1月1日至2011年12月31日入住神经ICU的978例患者队列中的100例患者子集进行二次分析回顾性得出的(推导子集)。然后,针对另外100例患者子集(验证子集)进行验证。将自动搜索算法的敏感性、特异性、阴性和阳性预测值与手动病历审查(参考标准)进行比较,以提取拔管失败的数据。
在100例随机患者的推导子集中,初始自动电子搜索策略的敏感性为85%(95%CI,56%-97%),特异性为95%(95%CI,87%-98%)。随着搜索算法的改进,该子集中最终敏感性为93%(95%CI,64%-99%),特异性提高到100%(95%CI,95%-100%)。通过另一个100例随机患者子集对该算法进行验证时,报告的敏感性和特异性分别为94%(95%CI,69%-99%)和98%(95%CI,92%-99%)。
使用电子搜索算法可在ICU中正确提取拔管失败情况,具有高度的敏感性和特异性。此类搜索算法是用于识别拔管失败的手动图表审查的可靠替代方法。