Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
Mayo Clin Proc. 2011 May;86(5):382-8. doi: 10.4065/mcp.2010.0802.
To develop and validate time-efficient automated electronic search strategies for identifying preoperative risk factors for postoperative acute lung injury.
This secondary analysis of a prospective cohort study included 249 patients undergoing high-risk surgery between November 1, 2005, and August 31, 2006. Two independent data-extraction strategies were compared. The first strategy used a manual review of medical records and the second a Web-based query-building tool. Web-based searches were derived and refined in a derivation cohort of 83 patients and subsequently validated in an independent cohort of 166 patients. Agreement between the 2 search strategies was assessed with percent agreement and Cohen κ statistics.
Cohen κ statistics ranged from 0.34 (95% confidence interval, 0.00-0.86) for amiodarone to 0.85 for cirrhosis (95% confidence interval, 0.57-1.00). Agreement between manual and automated electronic data extraction was almost complete for 3 variables (diabetes mellitus, cirrhosis, H(2)-receptor antagonists), substantial for 3 (chronic obstructive pulmonary disease, proton pump inhibitors, statins), moderate for gastroesophageal reflux disease, and fair for 2 variables (restrictive lung disease and amiodarone). Automated electronic queries outperformed manual data collection in terms of sensitivities (median, 100% [range, 77%-100%] vs median, 87% [range, 0%-100%]). The specificities were uniformly high (≥ 96%) for both search strategies.
Automated electronic query building is an iterative process that ultimately results in accurate, highly efficient data extraction. These strategies may be useful for both clinicians and researchers when determining the risk of time-sensitive conditions such as postoperative acute lung injury.
开发并验证高效的自动化电子搜索策略,以确定术后急性肺损伤的术前危险因素。
本二次分析纳入了 2005 年 11 月 1 日至 2006 年 8 月 31 日期间行高危手术的 249 例患者,该研究为前瞻性队列研究。比较了两种独立的数据提取策略。第一种策略使用病历的人工审查,第二种策略使用基于网络的查询构建工具。在 83 例患者的推导队列中推导和改进了基于网络的搜索,并在 166 例独立队列中进行了验证。两种搜索策略之间的一致性通过百分比一致性和 Cohen κ 统计来评估。
Cohen κ 统计范围从胺碘酮的 0.34(95%置信区间,0.00-0.86)到肝硬化的 0.85(95%置信区间,0.57-1.00)。对于 3 个变量(糖尿病、肝硬化、H2 受体拮抗剂),手动和自动化电子数据提取之间的一致性几乎是完整的,对于 3 个变量(慢性阻塞性肺疾病、质子泵抑制剂、他汀类药物)是实质性的,对于胃食管反流病是中度的,对于 2 个变量(限制性肺病和胺碘酮)是公平的。自动化电子查询在敏感性方面优于手动数据收集(中位数,100%[范围,77%-100%] vs 中位数,87%[范围,0%-100%])。两种搜索策略的特异性均很高(≥96%)。
自动化电子查询构建是一个迭代过程,最终可以实现准确、高效的数据提取。当确定术后急性肺损伤等时间敏感情况的风险时,这些策略可能对临床医生和研究人员都有用。