Suppr超能文献

基于无人机航拍图像的动态运动建模进行运动目标检测

Moving object detection using dynamic motion modelling from UAV aerial images.

作者信息

Saif A F M Saifuddin, Prabuwono Anton Satria, Mahayuddin Zainal Rasyid

机构信息

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia.

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia ; Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia.

出版信息

ScientificWorldJournal. 2014;2014:890619. doi: 10.1155/2014/890619. Epub 2014 Apr 29.

Abstract

Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

摘要

由于未考虑适当的运动估计,基于运动分析从无人机航空图像中检测运动物体仍然是一个未解决的问题。现有的从无人机航空图像中检测运动物体的方法没有处理基于运动的像素强度测量,以稳健地检测运动物体。此外,目前关于从无人机航空图像中检测运动物体的研究大多分别依赖于帧差法或分割法。本研究有两个主要目的:一是开发一种名为DMM(动态运动模型)的新运动模型,二是应用所提出的分割方法SUED(基于边缘膨胀的分割),将帧差法与DMM模型一起嵌入。所提出的DMM模型基于最高像素强度提供有效的搜索窗口,以便仅分割运动物体的特定区域,而不是使用SUED搜索帧的整个区域。在所提出方案的每个阶段,DMM和SUED的实验融合忠实地产生提取的运动物体。实验结果表明,所提出的DMM和SUED成功地证明了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验