Suppr超能文献

N-甲基-D-天冬氨酸(NMDA)受体拮抗剂氯胺酮和Ro25-6981在体内抑制海马下托中谷氨酸的诱发释放。

NMDA receptor antagonists ketamine and Ro25-6981 inhibit evoked release of glutamate in vivo in the subiculum.

作者信息

Stan T L, Alvarsson A, Branzell N, Sousa V C, Svenningsson P

机构信息

Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Laboratory of Translational Neuropharmacology, Center of Molecular Medicine, Karolinska Institute, Stockholm, Sweden.

出版信息

Transl Psychiatry. 2014 Jun 3;4(6):e395. doi: 10.1038/tp.2014.39.

Abstract

Preclinical and clinical data have identified ketamine, a non-selective NMDAR (N-methyl-D-aspartate receptor) antagonist, as a promising medication for patients who do not respond to treatment with monoamine-based antidepressants. Moreover, unlike the current monoamine-based antidepressants, ketamine has a long-lasting effect already after a single dose. The mechanisms of ketamine action remain to be fully understood. Using a recently developed microelectrode array (MEA), which allows sub-second measurements of fluctuating glutamate concentrations, we studied here the effects of in vivo local application of the ketamine and of the N2B subunit-specific antagonist Ro25-6981 upon evoked glutamate release. Both ligands inhibit glutamate release in subregions of the hippocampus and prefrontal cortex. Likewise, acute systemic ketamine treatment, at an antidepressant dose, caused a reduction in evoked glutamate release in the subiculum. We suggest that the effects of ketamine and Ro25-6981 in the subiculum could involve blockade of presynaptic NMDA receptors containing N2B subunits.

摘要

临床前和临床数据已确定,氯胺酮作为一种非选择性N-甲基-D-天冬氨酸受体(NMDAR)拮抗剂,对于那些对基于单胺的抗抑郁药治疗无反应的患者来说是一种有前景的药物。此外,与目前基于单胺的抗抑郁药不同,氯胺酮单次给药后就具有持久作用。氯胺酮的作用机制仍有待充分了解。我们使用最近开发的微电极阵列(MEA),该阵列能够对波动的谷氨酸浓度进行亚秒级测量,在此研究了体内局部应用氯胺酮和N2B亚基特异性拮抗剂Ro25-6981对诱发的谷氨酸释放的影响。两种配体均抑制海马体和前额叶皮质亚区域的谷氨酸释放。同样,以抗抑郁剂量进行的急性全身氯胺酮治疗导致海马下托诱发的谷氨酸释放减少。我们认为,氯胺酮和Ro25-6981在海马下托的作用可能涉及对含有N2B亚基的突触前NMDA受体的阻断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5356/4080320/98982d73cc58/tp201439f1.jpg

相似文献

4
Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.
Biol Psychiatry. 2011 Apr 15;69(8):754-61. doi: 10.1016/j.biopsych.2010.12.015. Epub 2011 Feb 3.
5
Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.
Psychopharmacology (Berl). 2018 Apr;235(4):1055-1068. doi: 10.1007/s00213-017-4823-2. Epub 2018 Jan 5.
6
Mapping the central effects of (±)-ketamine and traxoprodil using pharmacological magnetic resonance imaging in awake rats.
J Psychopharmacol. 2018 Feb;32(2):146-155. doi: 10.1177/0269881117746901. Epub 2018 Jan 30.
7
Embryonic Ketamine Produces a Downregulation of Prefrontal Cortex NMDA Receptors and Anxiety-Like Behavior in Adult Offspring.
Neuroscience. 2019 Sep 1;415:18-30. doi: 10.1016/j.neuroscience.2019.07.018. Epub 2019 Jul 17.
8
Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice.
Neuropharmacology. 2017 Jan;112(Pt A):198-209. doi: 10.1016/j.neuropharm.2016.05.010. Epub 2016 May 17.
9
NMDA receptor antagonists traxoprodil and lanicemine improve hippocampal-prefrontal coupling and reward-related networks in rats.
Psychopharmacology (Berl). 2019 Dec;236(12):3451-3463. doi: 10.1007/s00213-019-05310-3. Epub 2019 Jul 2.

引用本文的文献

1
Recent Advances in the Psychopharmacology of Major Depressive Disorder.
BJPsych Adv. 2023 Mar;29(2):117-130. doi: 10.1192/bja.2022.14. Epub 2022 Apr 4.
6
Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors.
Mol Psychiatry. 2021 Dec;26(12):7425-7435. doi: 10.1038/s41380-021-01246-3. Epub 2021 Aug 11.
9
Mas-Related Gene (Mrg) C Activation Attenuates Bone Cancer Pain via Modulating Gi and NR2B.
PLoS One. 2016 May 6;11(5):e0154851. doi: 10.1371/journal.pone.0154851. eCollection 2016.
10
Roles of Presynaptic NMDA Receptors in Neurotransmission and Plasticity.
Trends Neurosci. 2016 Jan;39(1):26-39. doi: 10.1016/j.tins.2015.11.001. Epub 2015 Dec 23.

本文引用的文献

2
Ketamine regulates the presynaptic release machinery in the hippocampus.
J Psychiatr Res. 2013 Jul;47(7):892-9. doi: 10.1016/j.jpsychires.2013.03.008. Epub 2013 Mar 30.
3
Synaptic mechanisms underlying rapid antidepressant action of ketamine.
Am J Psychiatry. 2012 Nov;169(11):1150-6. doi: 10.1176/appi.ajp.2012.12040531.
4
Ketamine may block NMDA receptors in astrocytes causing a rapid antidepressant effect.
Front Synaptic Neurosci. 2012 Dec 24;4:8. doi: 10.3389/fnsyn.2012.00008. eCollection 2012.
6
Synaptic dysfunction in depression: potential therapeutic targets.
Science. 2012 Oct 5;338(6103):68-72. doi: 10.1126/science.1222939.
7
Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11.
Mol Psychiatry. 2013 Oct;18(10):1096-105. doi: 10.1038/mp.2012.130. Epub 2012 Oct 2.
8
Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.
Neuron. 2012 Aug 9;75(3):451-66. doi: 10.1016/j.neuron.2012.06.017.
10
The hidden third: improving outcome in treatment-resistant depression.
J Psychopharmacol. 2012 May;26(5):587-602. doi: 10.1177/0269881111431748. Epub 2012 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验