Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA.
Br J Anaesth. 2013 Apr;110(4):592-9. doi: 10.1093/bja/aes448. Epub 2012 Dec 4.
Presynaptic effects of general anaesthetics are not well characterized. We tested the hypothesis that isoflurane exhibits transmitter-specific effects on neurotransmitter release from neurochemically and functionally distinct isolated mammalian nerve terminals.
Nerve terminals from adult male rat brain were prelabelled with [(3)H]glutamate and [(14)C]GABA (cerebral cortex), [(3)H]norepinephrine (hippocampus), [(14)C]dopamine (striatum), or [(3)H]choline (precursor of [(3)H]acetylcholine; striatum). Release evoked by depolarizing pulses of 4-aminopyridine (4AP) or elevated KCl was quantified using a closed superfusion system.
Isoflurane at clinical concentrations (<0.7 mM; ~2 times median anaesthetic concentration) inhibited Na(+) channel-dependent 4AP-evoked release of the five neurotransmitters tested in a concentration-dependent manner. Isoflurane was a more potent inhibitor [expressed as IC(50) (SEM)] of glutamate release [0.37 (0.03) mM; P<0.05] compared with the release of GABA [0.52 (0.03) mM], norepinephrine [0.48 (0.03) mM], dopamine [0.48 (0.03) mM], or acetylcholine [0.49 (0.02) mM]. Inhibition of Na(+) channel-independent release evoked by elevated K(+) was not significant at clinical concentrations of isoflurane, with the exception of dopamine release [IC(50)=0.59 (0.03) mM].
Isoflurane inhibited the release of the major central nervous system neurotransmitters with selectivity for glutamate release, consistent with both widespread inhibition and nerve terminal-specific presynaptic effects. Glutamate release was most sensitive to inhibition compared with GABA, acetylcholine, dopamine, and norepinephrine release due to presynaptic specializations in ion channel expression, regulation, and/or coupling to exocytosis. Reductions in neurotransmitter release by volatile anaesthetics could contribute to altered synaptic transmission, leading to therapeutic and toxic effects involving all major neurotransmitter systems.
全身麻醉药的突触前效应尚未得到很好的描述。我们测试了异氟醚对神经化学和功能上不同的分离哺乳动物神经末梢的神经递质释放表现出递质特异性作用的假设。
成年雄性大鼠脑的神经末梢用 [(3)H]谷氨酸和 [(14)C]GABA(大脑皮层)、[(3)H]去甲肾上腺素(海马体)、[(14)C]多巴胺(纹状体)或 [(3)H]胆碱([ (3)H]乙酰胆碱的前体;纹状体)进行预标记。使用封闭的超滤液系统定量测量 4-氨基吡啶(4AP)或升高的 KCl 引发的去极化脉冲引起的释放。
在临床浓度(<0.7 mM;~2 倍于中位数麻醉浓度)下,异氟醚以浓度依赖性方式抑制了五种神经递质测试中 Na(+)通道依赖性 4AP 引发的释放。异氟醚是一种更有效的抑制剂[表示为 IC(50)(SEM)],谷氨酸释放的 IC(50)为 0.37(0.03)mM;P<0.05]与 GABA[0.52(0.03)mM]、去甲肾上腺素[0.48(0.03)mM]、多巴胺[0.48(0.03)mM]或乙酰胆碱[0.49(0.02)mM]的释放相比。在临床浓度的异氟醚下,升高的 K(+)引发的 Na(+)通道非依赖性释放的抑制作用不显著,除了多巴胺释放[IC(50)=0.59(0.03)mM]。
异氟醚抑制了主要中枢神经系统神经递质的释放,对谷氨酸释放具有选择性,这与广泛抑制和神经末梢特异性突触前效应一致。与 GABA、乙酰胆碱、多巴胺和去甲肾上腺素释放相比,谷氨酸释放对抑制最敏感,这是由于离子通道表达、调节和/或与胞吐作用偶联的突触前特化。挥发性麻醉剂对神经递质释放的减少可能导致突触传递改变,从而导致涉及所有主要神经递质系统的治疗和毒性作用。