Suppr超能文献

FN-DFE:用于增强混合能源系统弹性状态感知的模糊神经网络数据融合引擎。

FN-DFE: fuzzy-neural data fusion engine for enhanced resilient state-awareness of hybrid energy systems.

出版信息

IEEE Trans Cybern. 2014 Nov;44(11):2065-75. doi: 10.1109/TCYB.2014.2323891. Epub 2014 May 30.

Abstract

Resiliency and improved state-awareness of modern critical infrastructures, such as energy production and industrial systems, is becoming increasingly important. As control systems become increasingly complex, the number of inputs and outputs increase. Therefore, in order to maintain sufficient levels of state-awareness, a robust system state monitoring must be implemented that correctly identifies system behavior even when one or more sensors are faulty. Furthermore, as intelligent cyber adversaries become more capable, incorrect values may be fed to the operators. To address these needs, this paper proposes a fuzzy-neural data fusion engine (FN-DFE) for resilient state-awareness of control systems. The designed FN-DFE is composed of a three-layered system consisting of: 1) traditional threshold based alarms; 2) anomalous behavior detector using self-organizing fuzzy logic system; and 3) artificial neural network-based system modeling and prediction. The improved control system state-awareness is achieved via fusing input data from multiple sources and combining them into robust anomaly indicators. In addition, the neural network-based signal predictions are used to augment the resiliency of the system and provide coherent state-awareness despite temporary unavailability of sensory data. The proposed system was integrated and tested with a model of the Idaho National Laboratory's hybrid energy system facility known as HYTEST. Experiment results demonstrate that the proposed FN-DFE provides timely plant performance monitoring and anomaly detection capabilities. It was shown that the system is capable of identifying intrusive behavior significantly earlier than conventional threshold-based alarm systems.

摘要

现代关键基础设施(如能源生产和工业系统)的弹性和增强的态势感知变得越来越重要。随着控制系统变得越来越复杂,输入和输出的数量也在增加。因此,为了保持足够的态势感知水平,必须实施强大的系统状态监测,即使一个或多个传感器出现故障,也能正确识别系统行为。此外,随着智能网络攻击者的能力不断提高,可能会向操作人员提供错误的值。为了解决这些需求,本文提出了一种用于控制系统弹性态势感知的模糊神经网络数据融合引擎(FN-DFE)。所设计的 FN-DFE 由一个由三层系统组成:1)基于传统阈值的报警;2)使用自组织模糊逻辑系统的异常行为检测器;3)基于人工神经网络的系统建模和预测。通过融合来自多个源的输入数据并将其组合成强大的异常指标,实现了改进的控制系统态势感知。此外,基于神经网络的信号预测用于增强系统的弹性,并提供一致的态势感知,即使在暂时无法获得传感器数据的情况下。所提出的系统与爱达荷国家实验室的混合动力系统设施 HYTEST 的模型进行了集成和测试。实验结果表明,所提出的 FN-DFE 提供了及时的工厂性能监测和异常检测能力。结果表明,该系统能够比传统的基于阈值的报警系统更早地识别入侵行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验