Suppr超能文献

从功能磁共振成像引导的经颅磁刺激过程中记录的脑电图数据中提取视觉诱发电位。

Extracting visual evoked potentials from EEG data recorded during fMRI-guided transcranial magnetic stimulation.

作者信息

Sadeh Boaz, Yovel Galit

机构信息

School of Psychological Sciences, Tel-Aviv University.

School of Psychological Sciences, Tel-Aviv University; Sagol School of Neuroscience, Tel-Aviv University;

出版信息

J Vis Exp. 2014 May 12(87):51063. doi: 10.3791/51063.

Abstract

Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.

摘要

经颅磁刺激(TMS)是一种用于建立皮层区域与认知/神经生理效应之间因果关系的有效方法。具体而言,通过对目标区域的正常活动造成短暂干扰并测量电生理信号的变化,我们可以在受刺激的脑区或网络与我们记录的电生理信号之间建立因果关系。如果通过先前的功能磁共振成像(fMRI)扫描对目标脑区进行功能定义,TMS可用于将fMRI激活与记录的诱发电位联系起来。然而,鉴于磁脉冲会在脑电图(EEG)信号中引入高幅度伪迹,以及难以成功靶向由fMRI功能定义的区域,进行此类实验存在重大技术挑战。在此,我们描述一种将TMS、EEG和fMRI这三种常用工具结合起来的方法。我们解释如何使用解剖学或功能磁共振成像数据将刺激器线圈引导至所需目标区域,如何在同步TMS期间记录EEG,如何设计适合EEG-TMS结合的事件相关电位(ERP)研究,以及如何从记录的数据中提取可靠的ERP。我们将提供一项先前发表研究的代表性结果,其中fMRI引导的TMS与EEG同时使用,以表明ERP的面孔选择性N1和身体选择性N1成分与纹外皮层中不同的神经网络相关。这种方法使我们能够将fMRI的高空间分辨率与TMS和EEG的高时间分辨率结合起来,从而全面了解各种认知过程的神经基础。

相似文献

2
On the feasibility of concurrent human TMS-EEG-fMRI measurements.
J Neurophysiol. 2013 Feb;109(4):1214-27. doi: 10.1152/jn.00071.2012. Epub 2012 Dec 5.
5
The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies.
Neuroimage. 2019 Jan 15;185:300-312. doi: 10.1016/j.neuroimage.2018.10.052. Epub 2018 Oct 19.
7
TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.
Front Neural Circuits. 2016 Oct 7;10:78. doi: 10.3389/fncir.2016.00078. eCollection 2016.
8
Concurrent TMS-fMRI for causal network perturbation and proof of target engagement.
Neuroimage. 2021 Aug 15;237:118093. doi: 10.1016/j.neuroimage.2021.118093. Epub 2021 Apr 30.
9
TMS-EEG reveals hemispheric asymmetries in top-down influences of posterior intraparietal cortex on behavior and visual event-related potentials.
Neuropsychologia. 2017 Dec;107:94-101. doi: 10.1016/j.neuropsychologia.2017.11.012. Epub 2017 Nov 11.

本文引用的文献

1
α-band phase synchrony is related to activity in the fronto-parietal adaptive control network.
J Neurosci. 2012 Oct 10;32(41):14305-10. doi: 10.1523/JNEUROSCI.1358-12.2012.
3
Stimulation of category-selective brain areas modulates ERP to their preferred categories.
Curr Biol. 2011 Nov 22;21(22):1894-9. doi: 10.1016/j.cub.2011.09.030. Epub 2011 Oct 27.
4
The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception.
J Neurosci. 2011 Aug 17;31(33):11889-93. doi: 10.1523/JNEUROSCI.1161-11.2011.
5
Spatio-temporal indications of sub-cortical involvement in leftward bias of spatial attention.
Neuroimage. 2011 Feb 14;54(4):3010-20. doi: 10.1016/j.neuroimage.2010.10.078. Epub 2010 Nov 5.
6
Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task.
Neuroimage. 2011 Jan 15;54(2):1375-84. doi: 10.1016/j.neuroimage.2010.08.047. Epub 2010 Sep 8.
7
Electrophysiological Studies of Face Perception in Humans.
J Cogn Neurosci. 1996 Nov;8(6):551-565. doi: 10.1162/jocn.1996.8.6.551.
8
Consensus paper: combining transcranial stimulation with neuroimaging.
Brain Stimul. 2009 Apr;2(2):58-80. doi: 10.1016/j.brs.2008.11.002. Epub 2009 Feb 28.
10
The neural signature of phosphene perception.
Hum Brain Mapp. 2010 Sep;31(9):1408-17. doi: 10.1002/hbm.20941.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验