文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.

作者信息

Atluri Sravya, Frehlich Matthew, Mei Ye, Garcia Dominguez Luis, Rogasch Nigel C, Wong Willy, Daskalakis Zafiris J, Farzan Faranak

机构信息

Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada.

Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada; Department of Electrical and Computer Engineering, University of TorontoToronto, ON, Canada.

出版信息

Front Neural Circuits. 2016 Oct 7;10:78. doi: 10.3389/fncir.2016.00078. eCollection 2016.


DOI:10.3389/fncir.2016.00078
PMID:27774054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5054290/
Abstract

Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/1217a9926027/fncir-10-00078-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/0613311278bd/fncir-10-00078-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/2a939a9a035e/fncir-10-00078-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/8147c5d5c7d2/fncir-10-00078-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/d382df7a41d0/fncir-10-00078-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/5cdae8befc2a/fncir-10-00078-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/afc5caa3cd74/fncir-10-00078-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/d15125089ca5/fncir-10-00078-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/34439e1140b5/fncir-10-00078-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/67bc2ed09490/fncir-10-00078-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/654b6cd6b5db/fncir-10-00078-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/6e6005579556/fncir-10-00078-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/f337ebc33dfb/fncir-10-00078-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/248d20e42e61/fncir-10-00078-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/1217a9926027/fncir-10-00078-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/0613311278bd/fncir-10-00078-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/2a939a9a035e/fncir-10-00078-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/8147c5d5c7d2/fncir-10-00078-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/d382df7a41d0/fncir-10-00078-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/5cdae8befc2a/fncir-10-00078-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/afc5caa3cd74/fncir-10-00078-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/d15125089ca5/fncir-10-00078-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/34439e1140b5/fncir-10-00078-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/67bc2ed09490/fncir-10-00078-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/654b6cd6b5db/fncir-10-00078-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/6e6005579556/fncir-10-00078-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/f337ebc33dfb/fncir-10-00078-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/248d20e42e61/fncir-10-00078-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/5054290/1217a9926027/fncir-10-00078-g0014.jpg

相似文献

[1]
TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.

Front Neural Circuits. 2016-10-7

[2]
Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography.

Front Neural Circuits. 2016-9-22

[3]
Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software.

Neuroimage. 2016-10-20

[4]
Evaluation of algorithms for correction of transcranial magnetic stimulation-induced artifacts in electroencephalograms.

Med Biol Eng Comput. 2019-10-26

[5]
The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies.

Neuroimage. 2018-10-19

[6]
Recovering TMS-evoked EEG responses masked by muscle artifacts.

Neuroimage. 2016-10-1

[7]
Short-latency artifacts associated with concurrent TMS-EEG.

Brain Stimul. 2013-4-28

[8]
Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation.

J Neural Eng. 2016-12

[9]
EEG Artifact Removal in TMS Studies of Cortical Speech Areas.

Brain Topogr. 2020-1

[10]
ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

Hum Brain Mapp. 2018-1-13

引用本文的文献

[1]
Enhancing prefrontal modulation by phase-locking intermittent theta burst stimulation to a concurrent transcranial alternating current stimulation.

Imaging Neurosci (Camb). 2025-1-3

[2]
Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex.

Hum Brain Mapp. 2024-10-15

[3]
Influence of Large-Scale Brain State Dynamics on the Evoked Response to Brain Stimulation.

J Neurosci. 2024-9-25

[4]
Baseline markers of cortical excitation and inhibition predict response to theta burst stimulation treatment for youth depression.

Sci Rep. 2023-11-4

[5]
Neurophysiological characterization of stroke recovery: A longitudinal TMS and EEG study.

CNS Neurosci Ther. 2024-3

[6]
Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2023-8

[7]
Adaptive Bayesian Spectral Analysis of High-dimensional Nonstationary Time Series.

J Comput Graph Stat. 2021

[8]
Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials.

Hum Brain Mapp. 2022-12-1

[9]
A TMS/EEG protocol for the causal assessment of the functions of the oscillatory brain rhythms in perceptual and cognitive processes.

STAR Protoc. 2022-6-17

[10]
Intermittent Theta Burst Stimulation Increases Natural Oscillatory Frequency in Ipsilesional Motor Cortex Post-Stroke: A Transcranial Magnetic Stimulation and Electroencephalography Study.

Front Aging Neurosci. 2022-2-7

本文引用的文献

[1]
Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography.

Front Neural Circuits. 2016-9-22

[2]
Comparison of three ICA algorithms for ocular artifact removal from TMS-EEG recordings.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[3]
Dealing with artifacts in TMS-evoked EEG.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[4]
A practical guide to the selection of independent components of the electroencephalogram for artifact correction.

J Neurosci Methods. 2015-7-30

[5]
Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties.

Neuroimage. 2014-7-25

[6]
The EEG correlates of the TMS-induced EMG silent period in humans.

Neuroimage. 2013-12

[7]
The effect of stimulus parameters on TMS-EEG muscle artifacts.

Brain Stimul. 2012-8-10

[8]
Combined transcranial magnetic stimulation and electroencephalography: its past, present and future.

Brain Res. 2012-4-28

[9]
Brainstorm: a user-friendly application for MEG/EEG analysis.

Comput Intell Neurosci. 2011-4-13

[10]
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

Comput Intell Neurosci. 2010-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索