van Wijk Klaas J, Friso Giulia, Walther Dirk, Schulze Waltraud X
Department of Plant Biology, Cornell University, Ithaca, New York 14850
Department of Plant Biology, Cornell University, Ithaca, New York 14850.
Plant Cell. 2014 Jun;26(6):2367-2389. doi: 10.1105/tpc.114.125815. Epub 2014 Jun 3.
Protein (de)phosphorylation plays an important role in plants. To provide a robust foundation for subcellular phosphorylation signaling network analysis and kinase-substrate relationships, we performed a meta-analysis of 27 published and unpublished in-house mass spectrometry-based phospho-proteome data sets for Arabidopsis thaliana covering a range of processes, (non)photosynthetic tissue types, and cell cultures. This resulted in an assembly of 60,366 phospho-peptides matching to 8141 nonredundant proteins. Filtering the data for quality and consistency generated a set of medium and a set of high confidence phospho-proteins and their assigned phospho-sites. The relation between single and multiphosphorylated peptides is discussed. The distribution of p-proteins across cellular functions and subcellular compartments was determined and showed overrepresentation of protein kinases. Extensive differences in frequency of pY were found between individual studies due to proteomics and mass spectrometry workflows. Interestingly, pY was underrepresented in peroxisomes but overrepresented in mitochondria. Using motif-finding algorithms motif-x and MMFPh at high stringency, we identified compartmentalization of phosphorylation motifs likely reflecting localized kinase activity. The filtering of the data assembly improved signal/noise ratio for such motifs. Identified motifs were linked to kinases through (bioinformatic) enrichment analysis. This study also provides insight into the challenges/pitfalls of using large-scale phospho-proteomic data sets to nonexperts.
蛋白质(去)磷酸化在植物中起着重要作用。为了给亚细胞磷酸化信号网络分析和激酶-底物关系提供一个坚实的基础,我们对27个已发表和未发表的基于质谱的拟南芥磷酸化蛋白质组数据集进行了荟萃分析,这些数据集涵盖了一系列过程、(非)光合组织类型和细胞培养。这产生了一组与8141个非冗余蛋白质匹配的60366个磷酸化肽段。对数据进行质量和一致性筛选,生成了一组中等可信度和一组高可信度的磷酸化蛋白质及其指定的磷酸化位点。讨论了单磷酸化和多磷酸化肽段之间的关系。确定了磷酸化蛋白质在细胞功能和亚细胞区室中的分布,结果显示蛋白激酶存在过度表达。由于蛋白质组学和质谱工作流程的原因,在各个研究中发现磷酸化酪氨酸(pY)的频率存在广泛差异。有趣的是,pY在过氧化物酶体中表达不足,但在线粒体中表达过度。使用高严格度的基序查找算法Motif-X和MMFPh,我们确定了磷酸化基序的区室化,这可能反映了局部激酶活性。对数据集合的筛选提高了此类基序的信噪比。通过(生物信息学)富集分析将鉴定出的基序与激酶联系起来。这项研究还深入探讨了非专业人员使用大规模磷酸化蛋白质组数据集所面临的挑战/陷阱。