Suppr超能文献

电可读和光可读发光存储器。

Electrically and optically readable light emitting memories.

作者信息

Chang Che-Wei, Tan Wei-Chun, Lu Meng-Lin, Pan Tai-Chun, Yang Ying-Jay, Chen Yang-Fang

机构信息

1] Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China [2] Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China.

Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China.

出版信息

Sci Rep. 2014 Jun 4;4:5121. doi: 10.1038/srep05121.

Abstract

Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application.

摘要

基于氧化还原诱导电阻切换的电化学金属化存储器被认为是下一代电子存储设备。然而,电子信号存在互连延迟和读取速度受限的问题,这是存储器性能的主要障碍。为了解决这个问题,我们在此展示了发光存储器(LEM)的首次尝试,该发光存储器使用二氧化硅作为电阻切换材料,并与石墨烯 - 绝缘体 - 半导体(GIS)发光二极管(LED)串联。通过利用石墨烯的优异特性,如高导电性、高稳健性和高透明度,我们提出的LEM能够同时通过电子和光信号进行数据通信。双稳态发光状态和电阻切换特性都可归因于导电细丝机制。此外,通过对电流 - 电压特性的分析,我们进一步证实电致发光信号源于载流子隧穿,这与标准的p - n结模型有很大不同。我们在此强调,新开发的LEM器件结构简单,制造工艺成熟,集成了所有组成材料的优点,并且可以扩展到许多其他材料系统。它应该能够吸引学术关注并刺激工业应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faaf/4044638/854514f4625d/srep05121-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验