Ollivaux Céline, Soyez Daniel, Toullec Jean-Yves
Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.
J Pept Sci. 2014 Aug;20(8):595-612. doi: 10.1002/psc.2637. Epub 2014 Jun 3.
Peptides and proteins are chiral molecules with their structure determined by the composition and configuration of the amino acids constituting them. Natural amino acids (except glycine) display two chiral types (l- and d-enantiomers). For example, the presence of octopine, a derivative of l-arginine and d-alanine in octopus, or peptidyl poly-d-glutamic acid in a bacterial cell wall was demonstrated in the 1920s and 1930s, respectively. Nevertheless, an old dogma in biology was that proteins (in a strict sense) are composed of amino acids in the l-configuration exclusively, until a d-alanyl residue was reported in a frog skin opioid peptide in the early 1980s, and since, numerous d-amino acid containing peptides (DAACPs) have been discovered in multicellular organisms. Several hypotheses may be formulated to explain the origin of a d-residue in the peptide/protein chain. It may result from different mechanisms such as incorporation of a d-amino acid, non-enzymatic racemisation associated with ageing or diseases and enzymatic posttranslational modification. In the last case, the DAACPs are synthesised via a ribosome-dependent manner, and a normal codon for l-amino acid is present in the mRNA at the position where the d-residue is processed in the mature peptide by peptidyl aminoacyl l-d isomerisation, a peculiar and subtle posttranslational modification. In this review, the different pathways of biogenesis of DAACPs not only in bacteria but also in multicellular organisms are discussed, along with the description of the cellular specificity, the enzyme specificity and the substrate specificity of peptidyl aminoacyl l-d isomerisation.
肽和蛋白质是手性分子,其结构由构成它们的氨基酸的组成和构型决定。天然氨基酸(除甘氨酸外)有两种手性类型(L-和D-对映体)。例如,20世纪20年代和30年代分别证实了章鱼中存在章鱼碱(L-精氨酸和D-丙氨酸的衍生物),以及细菌细胞壁中存在肽基聚-D-谷氨酸。然而,生物学中的一个古老教条是,蛋白质(严格意义上)仅由L-构型的氨基酸组成,直到20世纪80年代初在青蛙皮肤阿片肽中报道了一个D-丙氨酰残基,此后,在多细胞生物中发现了许多含D-氨基酸的肽(DAACP)。可以提出几种假说来解释肽/蛋白质链中D-残基的起源。它可能由不同的机制导致,如D-氨基酸的掺入、与衰老或疾病相关的非酶消旋作用以及酶促翻译后修饰。在后一种情况下,DAACP通过核糖体依赖性方式合成,在成熟肽中经肽基氨酰L-D异构化处理D-残基的位置,mRNA中存在L-氨基酸的正常密码子,肽基氨酰L-D异构化是一种特殊而微妙的翻译后修饰。在这篇综述中,不仅讨论了细菌中,还讨论了多细胞生物中DAACP生物合成的不同途径,同时描述了肽基氨酰L-D异构化的细胞特异性、酶特异性和底物特异性。