Suppr超能文献

果蝇胚胎和幼虫外周神经系统的发育

Development of the embryonic and larval peripheral nervous system of Drosophila.

作者信息

Singhania Aditi, Grueber Wesley B

机构信息

Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.

出版信息

Wiley Interdiscip Rev Dev Biol. 2014 May-Jun;3(3):193-210. doi: 10.1002/wdev.135. Epub 2014 Apr 16.

Abstract

The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.

摘要

胚胎期和幼虫期果蝇的外周神经系统(PNS)由沿体壁分布的多种类型感觉神经元组成。感觉神经元及相关终末器官具有高度固定的位置和形态。果蝇中现有的许多强大的基因操作工具使外周神经系统成为阐明神经发育基本原理的有利系统。对果蝇外周神经系统的研究为细胞命运特化、不对称细胞分裂和树突形态发生的分子机制提供了关键见解。一个典型的谱系产生感觉神经元及相关器官,该谱系内的细胞通过不对称细胞分裂实现多样化。新特化的感觉神经元形成特定的树突模式,这受多种因素控制,包括转录调节因子、与相邻神经元的相互作用以及细胞内运输系统。此外,感觉轴突在中枢神经系统中表现出模式特异性的终末,这由感觉轴突分泌的配体及其表达的受体形成模式。模式特异性轴突投射对于协调幼虫行为至关重要。我们综述了外周神经系统发育的分子基础,并探讨了其中一些已确定的机制和分子在脊椎动物发育中保守的实例。

相似文献

1
Development of the embryonic and larval peripheral nervous system of Drosophila.
Wiley Interdiscip Rev Dev Biol. 2014 May-Jun;3(3):193-210. doi: 10.1002/wdev.135. Epub 2014 Apr 16.
6
Embryonic assembly of a central pattern generator without sensory input.
Nature. 2002 Mar 14;416(6877):174-8. doi: 10.1038/416174a.
7
Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons.
J Comp Neurol. 2008 Feb 1;506(4):548-68. doi: 10.1002/cne.21547.

引用本文的文献

3
Coordination of Pickpocket ion channel delivery and dendrite growth in Drosophila sensory neurons.
PLoS Genet. 2023 Nov 9;19(11):e1011025. doi: 10.1371/journal.pgen.1011025. eCollection 2023 Nov.
4
Linking neural circuits to the mechanics of animal behavior in larval locomotion.
Front Neural Circuits. 2023 Aug 17;17:1175899. doi: 10.3389/fncir.2023.1175899. eCollection 2023.
5
Central projections from Johnston's organ in the locust: Axogenesis and brain neuroarchitecture.
Dev Genes Evol. 2023 Dec;233(2):147-159. doi: 10.1007/s00427-023-00710-0. Epub 2023 Sep 11.
7
Nociception in fruit fly larvae.
Front Pain Res (Lausanne). 2023 Mar 17;4:1076017. doi: 10.3389/fpain.2023.1076017. eCollection 2023.
8
Early embryonic development of Johnston's organ in the antenna of the desert locust Schistocerca gregaria.
Dev Genes Evol. 2022 Dec;232(5-6):103-113. doi: 10.1007/s00427-022-00695-2. Epub 2022 Sep 23.
9
Cellular Pathogenesis of Chemotherapy-Induced Peripheral Neuropathy: Insights From and Human-Engineered Skin Models.
Front Pain Res (Lausanne). 2022 Jul 8;3:912977. doi: 10.3389/fpain.2022.912977. eCollection 2022.
10
Dynamic instability of dendrite tips generates the highly branched morphologies of sensory neurons.
Sci Adv. 2022 Jul;8(26):eabn0080. doi: 10.1126/sciadv.abn0080. Epub 2022 Jun 29.

本文引用的文献

1
Morphological differentiation of the embryonic peripheral neurons in Drosophila.
Rouxs Arch Dev Biol. 1987 Feb;196(2):69-77. doi: 10.1007/BF00402027.
3
Probabilistic splicing of Dscam1 establishes identity at the level of single neurons.
Cell. 2013 Nov 21;155(5):1166-77. doi: 10.1016/j.cell.2013.10.018.
4
Sanpodo controls sensory organ precursor fate by directing Notch trafficking and binding γ-secretase.
J Cell Biol. 2013 Apr 29;201(3):439-48. doi: 10.1083/jcb.201209023. Epub 2013 Apr 22.
5
Numb inhibits the recycling of Sanpodo in Drosophila sensory organ precursor.
Curr Biol. 2013 Apr 8;23(7):581-7. doi: 10.1016/j.cub.2013.02.020. Epub 2013 Mar 21.
6
Numb localizes at endosomes and controls the endosomal sorting of notch after asymmetric division in Drosophila.
Curr Biol. 2013 Apr 8;23(7):588-93. doi: 10.1016/j.cub.2013.03.002. Epub 2013 Mar 21.
7
Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation.
Nature. 2013 Jan 10;493(7431):221-5. doi: 10.1038/nature11685. Epub 2012 Dec 9.
9
Numb is required for the production of terminal asymmetric cell divisions in the developing mouse retina.
J Neurosci. 2012 Nov 28;32(48):17197-17210. doi: 10.1523/JNEUROSCI.4127-12.2012.
10
Dendritic filopodia, Ripped Pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae.
Curr Biol. 2012 Nov 20;22(22):2124-34. doi: 10.1016/j.cub.2012.09.019. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验