Suppr超能文献

基于电路网络识别和表征群落中的关键节点。

Identifying and characterizing key nodes among communities based on electrical-circuit networks.

作者信息

Zhu Fenghui, Wang Wenxu, Di Zengru, Fan Ying

机构信息

School of Systems Science, Beijing Normal University, Beijing, China.

出版信息

PLoS One. 2014 Jun 4;9(6):e97021. doi: 10.1371/journal.pone.0097021. eCollection 2014.

Abstract

Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.

摘要

具有社区结构的复杂网络在现实世界中无处不在。尽管已经开发了许多用于检测社区的方法,但我们仍然缺乏用于识别在复杂网络中社区间的交互和通信中起关键作用的重叠节点和桥接节点的工具。在此,我们基于局部流守恒开发了一种算法,以有效且高效地识别和区分这两种类型的节点。我们的方法适用于无向和有向网络,且无需事先了解社区结构。我们的方法绕过了在存在可能属于多个社区的重叠节点时划分社区这一极具挑战性的问题。由于重叠节点和桥接节点在维持许多社会和生物网络的功能方面至关重要,我们的工具为理解和控制带有关键节点的具有社区结构的真实复杂网络开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1910/4045573/040bc6e3b80c/pone.0097021.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验