Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
Phys Rev Lett. 2010 Jan 8;104(1):018701. doi: 10.1103/PhysRevLett.104.018701. Epub 2010 Jan 6.
We investigate the navigation problem in lattices with long-range connections and subject to a cost constraint. Our network is built from a regular two-dimensional (d=2) square lattice to be improved by adding long-range connections (shortcuts) with probability P(ij) approximately r(ij)(-alpha), where r(ij) is the Manhattan distance between sites i and j, and alpha is a variable exponent. We introduce a cost constraint on the total length of the additional links and find optimal transport in the system for alpha=d+1 established here for d=1 and d=2. Remarkably, this condition remains optimal, regardless of the strategy used for navigation, being based on local or global knowledge of the network structure, in sharp contrast with the results obtained for unconstrained navigation using global or local information, where the optimal conditions are alpha=0 and alpha=d, respectively. The validity of our results is supported by data on the U.S. airport network.
我们研究了具有长程连接且受到成本约束的格点中的导航问题。我们的网络由规则的二维(d=2)正方形晶格构建,通过以概率 P(ij)≈r(ij)(-alpha)添加长程连接(捷径)来改进,其中 r(ij)是站点 i 和 j 之间的曼哈顿距离,alpha 是变量指数。我们对附加链路的总长度引入了成本约束,并为这里的 d=1 和 d=2 找到了系统中的最优传输。值得注意的是,无论导航所使用的策略是基于网络结构的局部还是全局知识,这种情况都是最优的,与使用全局或局部信息进行无约束导航时得到的结果形成鲜明对比,在这种情况下,最优条件分别为 alpha=0 和 alpha=d。我们的结果得到了美国机场网络数据的支持。