Center for Nanoscience and Department of Physics, University of Munich , Amalienstraße 54, 80799 Munich, Germany.
ACS Nano. 2014 Jul 22;8(7):6551-5. doi: 10.1021/nn501644w. Epub 2014 Jun 6.
In synthetic biology, "understanding by building" requires exquisite control of the molecular constituents and their spatial organization. Site-specific coupling of DNA to proteins allows arrangement of different protein functionalities with emergent properties by self-assembly on origami-like DNA scaffolds or by direct assembly via Single-Molecule Cut & Paste (SMC&P). Here, we employed the ybbR-tag/Sfp system to covalently attach Coenzyme A-modified DNA to GFP and, as a proof of principle, arranged the chimera in different patterns by SMC&P. Fluorescence recordings of individual molecules proved that the proteins remained folded and fully functional throughout the assembly process. The high coupling efficiency and specificity as well as the negligible size (11 amino acids) of the ybbR-tag represent a mild, yet versatile, general and robust way of adding a freely programmable and highly selective attachment site to virtually any protein of interest.
在合成生物学中,“通过构建来理解”需要对分子成分及其空间组织进行精确控制。通过将 DNA 与蛋白质进行特异性偶联,可以通过折纸状 DNA 支架上的自组装或通过单分子切割和粘贴 (SMC&P) 直接组装,来排列具有新兴特性的不同蛋白质功能。在这里,我们利用 ybbR 标签/Sfp 系统将辅酶 A 修饰的 DNA 共价连接到 GFP 上,并通过 SMC&P 以证明原理,将嵌合体排列成不同的模式。单个分子的荧光记录证明,在整个组装过程中,蛋白质保持折叠和完全功能。ybbR 标签的高偶联效率和特异性以及微小的尺寸(11 个氨基酸)代表了一种温和但通用、强大的方法,可以将一个可自由编程且高度选择性的附着位点添加到几乎任何感兴趣的蛋白质上。