Suppr超能文献

将 DNA 自组装工程化为功能性纳米结构的模板。

Engineering DNA self-assemblies as templates for functional nanostructures.

机构信息

National Center for NanoScience and Technology , No. 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190 China.

出版信息

Acc Chem Res. 2014 Jun 17;47(6):1654-62. doi: 10.1021/ar400305g. Epub 2014 Mar 3.

Abstract

CONSPECTUS

DNA is a well-known natural molecule that carries genetic information. In recent decades, DNA has been used beyond its genetic role as a building block for the construction of engineering materials. Many strategies, such as tile assembly, scaffolded origami and DNA bricks, have been developed to design and produce 1D, 2D, and 3D architectures with sophisticated morphologies. Moreover, the spatial addressability of DNA nanostructures and sequence-dependent recognition enable functional elements to be precisely positioned and allow for the control of chemical and biochemical processes. The spatial arrangement of heterogeneous components using DNA nanostructures as the templates will aid in the fabrication of functional materials that are difficult to produce using other methods and can address scientific and technical challenges in interdisciplinary research. For example, plasmonic nanoparticles can be assembled into well-defined configurations with high resolution limit while exhibiting desirable collective behaviors, such as near-field enhancement. Conducting metallic or polymer patterns can be synthesized site-specifically on DNA nanostructures to form various controllable geometries, which could be used for electronic nanodevices. Biomolecules can be arranged into organized networks to perform programmable biological functionalities, such as distance-dependent enzyme-cascade activities. DNA nanostructures can carry multiple cytoactive molecules and cell-targeting groups simultaneously to address medical issues such as targeted therapy and combined administration. In this Account, we describe recent advances in the functionalization of DNA nanostructures in different fashions based on our research efforts in nanophotonics, nanoelectronics, and nanomedicine. We show that DNA origami nanostructures can guide the assembly of achiral, spherical, metallic nanoparticles into nature-mimicking chiral geometries through hybridization between complementary DNA strands on the surface of nanoparticles and DNA scaffolds, to generate circular dichroism (CD) response in the visible light region. We also show that DNA nanostructures, on which a HRP-mimicking DNAzyme acts as the catalyst, can direct the site-selective growth of conductive polymer nanomaterials with template configuration-dependent doping behaviors. We demonstrate that DNA origami nanostructures can act as an anticancer-drug carrier, loading drug through intercalation, and can effectively circumvent the drug resistance of cultured cancer cells. Finally, we show a label-free strategy for probing the location and stability of DNA origami nanocarriers in cellular environments by docking turn-off fluorescence dyes in DNA double helices. These functionalizations require further improvement and expansion for realistic applications. We discuss the future opportunities and challenges of DNA based assemblies. We expect that DNA nanostructures as engineering materials will stimulate the development of multidisciplinary and interdisciplinary research.

摘要

简介

DNA 是一种众所周知的天然分子,携带遗传信息。近几十年来,DNA 的作用已超越其遗传功能,成为构建工程材料的基石。许多策略,如平铺组装、有支架折纸和 DNA 砖,已被开发用于设计和制造具有复杂形态的 1D、2D 和 3D 结构。此外,DNA 纳米结构的空间可寻址性和序列依赖性识别使功能元件能够精确定位,并允许控制化学和生化过程。使用 DNA 纳米结构作为模板对异质成分进行空间排列,将有助于制造使用其他方法难以制造的功能材料,并解决跨学科研究中的科学和技术挑战。例如,等离子体纳米粒子可以通过组装成具有高分辨率限制的明确定义的结构,同时表现出理想的集体行为,如近场增强。导电金属或聚合物图案可以在 DNA 纳米结构上进行特定位置的合成,以形成各种可控几何形状,可用于电子纳米器件。生物分子可以排列成有组织的网络,以执行可编程的生物学功能,如距离依赖性酶级联活性。DNA 纳米结构可以同时携带多个细胞活性分子和细胞靶向基团,以解决靶向治疗和联合给药等医学问题。在本综述中,我们根据在纳米光子学、纳米电子学和纳米医学方面的研究努力,描述了以不同方式对 DNA 纳米结构进行功能化的最新进展。我们表明,DNA 折纸纳米结构可以通过表面互补 DNA 链与 DNA 支架之间的杂交,引导非手性、球形、金属纳米粒子组装成具有自然模仿手性的几何形状,从而在可见光区域产生圆二色性(CD)响应。我们还表明,在 HRP 模拟 DNA 酶作为催化剂的 DNA 纳米结构上,可以指导具有模板配置依赖性掺杂行为的导电聚合物纳米材料的选择性生长。我们证明 DNA 折纸纳米结构可以作为抗癌药物载体,通过嵌入来加载药物,并能有效规避培养癌细胞的耐药性。最后,我们展示了一种通过在 DNA 双螺旋中对接关闭荧光染料来探测细胞环境中 DNA 折纸纳米载体位置和稳定性的无标记策略。这些功能化需要进一步改进和扩展,以实现实际应用。我们讨论了基于 DNA 的组装的未来机会和挑战。我们预计,作为工程材料的 DNA 纳米结构将激发多学科和跨学科研究的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验