Suppr超能文献

模块化蛋白-DNA 共晶作为精确、可编程的组装支架。

Modular Protein-DNA Cocrystals as Precise, Programmable Assembly Scaffolds.

机构信息

Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, Colorado 80523, United States.

Department of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523, United States.

出版信息

ACS Nano. 2023 Jul 25;17(14):13110-13120. doi: 10.1021/acsnano.2c07282. Epub 2023 Jul 5.

Abstract

High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein-DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA-DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein-protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating 222 lattice, a phenomenon previously observed in metal-organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA-DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA-DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.

摘要

我们设计了蛋白质-DNA 共晶作为 DNA 结合分子的支架。这些设计的共晶,同晶型共晶,包含 DNA 结合蛋白和同源 DNA 模块,其中 DNA-DNA 连接点端对端堆叠。此外,晶体对称性允许 DNA 堆叠进行拓扑保持(同晶型)扩展而不会破坏蛋白质-蛋白质接触,从而为客体扩散提供更大的溶剂通道。实验中,所得设计的同晶型共晶采用了互穿的 222 晶格,这是先前在金属-有机骨架 (MOFs) 中观察到的现象。尽管 DNA-DNA 连接点发生了无数的修饰,但互穿晶格仍能可靠地在相同的空间群中结晶。组装在插入用于扩展的 DNA 方面具有模块性,为指定支架的客体提供可互换的 DNA 序列。此外,DNA-DNA 连接点是可调的,可以容纳不同的粘性碱基突出长度和末端磷酸化。作为概念验证,我们在结晶过程中分别使用互穿支架晶体来捕获三种不同的客体分子。同晶型共晶设计为 DNA 结合分子提供了一种可编程支架的途径,并且设计原则可以应用于现有共晶来开发支架材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877f/10373652/9d54d0a97e6b/nn2c07282_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验