Suppr超能文献

亮氨酸在大脑中发挥作用以抑制食物摄入,但不作为低膳食蛋白质的生理信号。

Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein.

机构信息

Pennington Biomedical Research Center, Baton Rouge, Lousiana; and.

Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2014 Aug 1;307(3):R310-20. doi: 10.1152/ajpregu.00116.2014. Epub 2014 Jun 4.

Abstract

Intracerebroventricular injections of leucine are sufficient to suppress food intake, but it remains unclear whether brain leucine signaling represents a physiological signal of protein balance. We tested whether variations in dietary and circulating levels of leucine, or all three branched-chain amino acids (BCAAs), contribute to the detection of reduced dietary protein. Of the essential amino acids (EAAs) tested, only intracerebroventricular injection of leucine (10 μg) was sufficient to suppress food intake. Isocaloric low- (9% protein energy; LP) or normal- (18% protein energy) protein diets induced a divergence in food intake, with an increased consumption of LP beginning on day 2 and persisting throughout the study (P < 0.05). Circulating BCAA levels were reduced the day after LP diet exposure, but levels subsequently increased and normalized by day 4, despite persistent hyperphagia. Brain BCAA levels as measured by microdialysis on day 2 of diet exposure were reduced in LP rats, but this effect was most prominent postprandially. Despite these diet-induced changes in BCAA levels, reducing dietary leucine or total BCAAs independently from total protein was neither necessary nor sufficient to induce hyperphagia, while chronic infusion of EAAs into the brain of LP rats failed to consistently block LP-induced hyperphagia. Collectively, these data suggest that circulating BCAAs are transiently reduced by dietary protein restriction, but variations in dietary or brain BCAAs alone do not explain the hyperphagia induced by a low-protein diet.

摘要

侧脑室注射亮氨酸足以抑制食物摄入,但目前尚不清楚大脑亮氨酸信号是否代表蛋白质平衡的生理信号。我们测试了饮食和循环亮氨酸水平或所有三种支链氨基酸 (BCAA) 的变化是否有助于检测到蛋白质减少的饮食。在测试的必需氨基酸 (EAA) 中,只有侧脑室注射亮氨酸(10 μg)足以抑制食物摄入。等热量低蛋白(9%蛋白质能量;LP)或正常蛋白(18%蛋白质能量)饮食导致食物摄入量出现差异,LP 饮食开始后第 2 天开始增加,并持续整个研究期(P < 0.05)。LP 饮食暴露后的第 1 天,循环 BCAA 水平降低,但随后增加并在第 4 天恢复正常,尽管持续存在多食。LP 大鼠饮食暴露第 2 天的脑 BCAA 水平通过微透析测量时降低,但这种影响在餐后更为明显。尽管 BCAA 水平发生了这些饮食诱导的变化,但从总蛋白中独立减少膳食亮氨酸或总 BCAA 既不是必需的也不足以引起多食,而慢性将 EAA 输注到 LP 大鼠的大脑中也未能一致阻止 LP 诱导的多食。总的来说,这些数据表明,循环 BCAA 因饮食蛋白限制而短暂减少,但饮食或脑 BCAA 的变化本身并不能解释低蛋白饮食引起的多食。

相似文献

1
Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein.
Am J Physiol Regul Integr Comp Physiol. 2014 Aug 1;307(3):R310-20. doi: 10.1152/ajpregu.00116.2014. Epub 2014 Jun 4.
2
Restoration of metabolic health by decreased consumption of branched-chain amino acids.
J Physiol. 2018 Feb 15;596(4):623-645. doi: 10.1113/JP275075. Epub 2017 Dec 27.
4
Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control.
Nat Metab. 2019 May;1(5):532-545. doi: 10.1038/s42255-019-0059-2. Epub 2019 Apr 29.
5
Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake.
Am J Physiol Regul Integr Comp Physiol. 2018 Feb 1;314(2):R201-R215. doi: 10.1152/ajpregu.00283.2017. Epub 2017 Oct 18.
7
Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution.
Mol Metab. 2017 Jun 24;6(8):873-881. doi: 10.1016/j.molmet.2017.06.009. eCollection 2017 Aug.
10
Dietary branched-chain amino acids and protein selection by rats.
J Nutr. 1990 Jan;120(1):52-63. doi: 10.1093/jn/120.1.52.

引用本文的文献

3
Brain amino acid sensing for organismal amino acid homeostasis.
Open Biol. 2025 Aug;15(8):250092. doi: 10.1098/rsob.250092. Epub 2025 Aug 6.
7
Lysine Deprivation Regulates Npy Expression via GCN2 Signaling Pathway in Mandarin Fish ().
Int J Mol Sci. 2022 Jun 16;23(12):6727. doi: 10.3390/ijms23126727.
8
Nutrient-Based Appetite Regulation.
J Obes Metab Syndr. 2022 Jun 30;31(2):161-168. doi: 10.7570/jomes22031. Epub 2022 Jun 20.
9
Validation of a Feed Protocol in a Mouse Model That Mimics Marasmic Malnutrition.
Front Vet Sci. 2021 Nov 29;8:757136. doi: 10.3389/fvets.2021.757136. eCollection 2021.
10
Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis.
Nutrients. 2021 Nov 16;13(11):4103. doi: 10.3390/nu13114103.

本文引用的文献

2
Specific amino acids inhibit food intake via the area postrema or vagal afferents.
J Physiol. 2013 Nov 15;591(22):5611-21. doi: 10.1113/jphysiol.2013.258947. Epub 2013 Jul 29.
3
Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding.
Cell Metab. 2012 Nov 7;16(5):579-87. doi: 10.1016/j.cmet.2012.10.003.
4
Effect of central and peripheral leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus).
J Comp Physiol B. 2013 Feb;183(2):261-8. doi: 10.1007/s00360-012-0699-y. Epub 2012 Jul 29.
5
Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins.
Nutr Res Rev. 2012 Jun;25(1):29-39. doi: 10.1017/S0954422411000175. Epub 2012 May 29.
6
Homeostatic regulation of protein intake: in search of a mechanism.
Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R917-28. doi: 10.1152/ajpregu.00609.2011. Epub 2012 Feb 8.
7
Testing protein leverage in lean humans: a randomised controlled experimental study.
PLoS One. 2011;6(10):e25929. doi: 10.1371/journal.pone.0025929. Epub 2011 Oct 12.
9
Metabolic and genomic response to dietary isocaloric protein restriction in the rat.
J Biol Chem. 2011 Feb 18;286(7):5266-77. doi: 10.1074/jbc.M110.185991. Epub 2010 Dec 8.
10
Protein, amino acids, vagus nerve signaling, and the brain.
Am J Clin Nutr. 2009 Sep;90(3):838S-843S. doi: 10.3945/ajcn.2009.27462W. Epub 2009 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验