Lal Hind, Ahmad Firdos, Zhou Jibin, Yu Justine E, Vagnozzi Ronald J, Guo Yuanjun, Yu Daohai, Tsai Emily J, Woodgett James, Gao Erhe, Force Thomas
From the Center for Translational Medicine (H.L., F.A., J.Z., J.E.U., R.J.V., Y.G., E.G., T.F.), Department of Clinical Sciences (D.Y.), and Section of Cardiology (E.J.T., T.F.), Temple University School of Medicine, Philadelphia, PA; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (J.W.); and Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., Y.G., T.F.).
Circulation. 2014 Jul 29;130(5):419-30. doi: 10.1161/CIRCULATIONAHA.113.008364. Epub 2014 Jun 4.
Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. After myocardial infarction, activated cardiac fibroblasts deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate, and new molecular targets are needed.
Herein we report that glycogen synthase kinase-3β (GSK-3β) is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using 2 fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a profibrotic myofibroblast phenotype in isolated cardiac fibroblasts, in post-myocardial infarction hearts, and in mouse embryonic fibroblasts deleted for GSK-3β. Mechanistically, GSK-3β inhibits profibrotic transforming growth factor-β1/SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the significant increase of SMAD-3 transcriptional activity. This pathway is central to the pathology because a small-molecule inhibitor of SMAD-3 largely prevented fibrosis and limited left ventricular remodeling.
These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of cardiac fibroblasts in remodeling and ventricular dysfunction.
心肌梗死引起的重塑包括心室扩张、收缩功能障碍和纤维化。其中,纤维化最不为人所了解。心肌梗死后,活化的心脏成纤维细胞会沉积细胞外基质。目前预防纤维化的治疗方法并不充分,需要新的分子靶点。
在此我们报告,在缺血的人类和小鼠心脏的纤维化组织中,糖原合酶激酶-3β(GSK-3β)被磷酸化(抑制)。使用两种成纤维细胞特异性GSK-3β基因敲除小鼠模型,我们发现心脏成纤维细胞中GSK-3β的缺失会导致缺血心脏发生纤维化、左心室功能障碍和过度瘢痕形成。GSK-3β的缺失在分离的心脏成纤维细胞、心肌梗死后的心脏以及GSK-3β缺失的小鼠胚胎成纤维细胞中诱导出促纤维化的肌成纤维细胞表型。从机制上讲,GSK-3β通过与SMAD-3相互作用抑制促纤维化的转化生长因子-β1/SMAD-3信号通路。此外,GSK-3β的缺失导致SMAD-3转录活性显著增加。该信号通路是病理学的核心,因为一种SMAD-3小分子抑制剂在很大程度上预防了纤维化并限制了左心室重塑。
这些研究支持在心肌纤维化疾病中靶向GSK-3β,并确立了心脏成纤维细胞在重塑和心室功能障碍中的关键作用。