Suppr超能文献

阿尔茨海默病中的定向进展脑网络:特性与分类

Directed progression brain networks in Alzheimer's disease: properties and classification.

作者信息

Friedman Eric J, Young Karl, Asif Danial, Jutla Inderjit, Liang Michael, Wilson Scott, Landsberg Adam S, Schuff Norbert

机构信息

1 International Computer Science Institute , Berkeley, California.

出版信息

Brain Connect. 2014 Jun;4(5):384-93. doi: 10.1089/brain.2014.0235.

Abstract

This article introduces a new approach in brain connectomics aimed at characterizing the temporal spread in the brain of pathologies like Alzheimer's disease (AD). The main instrument is the development of "directed progression networks" (DPNets), wherein one constructs directed edges between nodes based on (weakly) inferred directions of the temporal spreading of the pathology. This stands in contrast to many previously studied brain networks where edges represent correlations, physical connections, or functional progressions. In addition, this is one of a few studies showing the value of using directed networks in the study of AD. This article focuses on the construction of DPNets for AD using longitudinal cortical thickness measurements from magnetic resonance imaging data. The network properties are then characterized, providing new insights into AD progression, as well as novel markers for differentiating normal cognition (NC) and AD at the group level. It also demonstrates the important role of nodal variations for network classification (i.e., the significance of standard deviations, not just mean values of nodal properties). Finally, the DPNets are utilized to classify subjects based on their global network measures using a variety of data-mining methodologies. In contrast to most brain networks, these DPNets do not show high clustering and small-world properties.

摘要

本文介绍了脑连接组学中的一种新方法,旨在描述阿尔茨海默病(AD)等病理状态在大脑中的时间扩散特征。主要手段是开发“定向进展网络”(DPNets),即在节点之间基于病理状态时间扩散的(弱)推断方向构建有向边。这与许多先前研究的脑网络形成对比,在那些网络中,边代表相关性、物理连接或功能进展。此外,这是少数几项显示在AD研究中使用有向网络价值的研究之一。本文重点介绍了利用磁共振成像数据的纵向皮质厚度测量构建AD的DPNets。然后对网络特性进行了表征,为AD进展提供了新的见解,以及在群体水平上区分正常认知(NC)和AD的新标记。它还证明了节点变化在网络分类中的重要作用(即节点特性标准差的重要性,而不仅仅是节点特性的平均值)。最后,利用各种数据挖掘方法,根据其全局网络测量对DPNets进行主体分类。与大多数脑网络不同,这些DPNets没有显示出高聚类和小世界特性。

相似文献

本文引用的文献

9
FreeSurfer.FreeSurfer。
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验