Yarham John W, Lamichhane Tek N, Pyle Angela, Mattijssen Sandy, Baruffini Enrico, Bruni Francesco, Donnini Claudia, Vassilev Alex, He Langping, Blakely Emma L, Griffin Helen, Santibanez-Koref Mauro, Bindoff Laurence A, Ferrero Ileana, Chinnery Patrick F, McFarland Robert, Maraia Richard J, Taylor Robert W
Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
Intramural Research Program, NICHD, NIH, Bethesda, Maryland, United States of America.
PLoS Genet. 2014 Jun 5;10(6):e1004424. doi: 10.1371/journal.pgen.1004424. eCollection 2014 Jun.
Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.
鉴于线粒体蛋白质组的规模以及疾病表现的异质性,确定线粒体疾病的遗传基础在技术上具有挑战性。通过新一代外显子组测序,我们在一名患有严重复合型线粒体呼吸链缺陷且线粒体蛋白质合成相应紊乱的患者中,发现了TRIT1基因存在纯合的p.Arg323Gln突变。该基因编码人类异戊烯基转移酶,负责对一小部分胞质和线粒体tRNA的反密码子环进行i6A37修饰。先前在酵母中已表明,i6A37缺乏会以密码子特异性方式降低翻译效率和保真度。对与底物tRNA结合的同源酵母异戊烯基转移酶的共晶体结构上的p.Arg323Gln突变进行建模,表明它是与反密码子茎的tRNA主链相互作用的一系列相邻碱性侧链之一,与催化中心有一定距离。我们发现,携带p.Arg323Gln TRIT1突变的患者细胞在胞质和线粒体tRNA中i6A37均严重缺乏。用野生型TRIT1转导患者成纤维细胞可完全补充胞质和线粒体tRNA的i6A37缺乏。此外,我们表明,TRIT1识别的反密码子环序列A36A37A38中先前报道的致病性m.7480A>G线粒体tRNASer(UCN)突变会导致i6A37修饰缺失。这些数据表明,i6A37 tRNA修饰缺乏应被视为由核基因和线粒体DNA突变引起的人类疾病的潜在机制,同时为TRIT1在胞质和线粒体tRNA修饰中的结构和功能提供了见解。