Suppr超能文献

使用硫化钴(CoS₂)微纳结构的高性能电催化。

High-performance electrocatalysis using metallic cobalt pyrite (CoS₂) micro- and nanostructures.

机构信息

Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.

出版信息

J Am Chem Soc. 2014 Jul 16;136(28):10053-61. doi: 10.1021/ja504099w. Epub 2014 Jun 17.

Abstract

The development of efficient and robust earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) is an ongoing challenge. We report metallic cobalt pyrite (cobalt disulfide, CoS2) as one such high-activity candidate material and demonstrate that its specific morphology--film, microwire, or nanowire, made available through controlled synthesis--plays a crucial role in determining its overall catalytic efficacy. The increase in effective electrode surface area that accompanies CoS2 micro- and nanostructuring substantially boosts its HER catalytic performance, with CoS2 nanowire electrodes achieving geometric current densities of -10 mA cm(-2) at overpotentials as low as -145 mV vs the reversible hydrogen electrode. Moreover, micro- and nanostructuring of the CoS2 material has the synergistic effect of increasing its operational stability, cyclability, and maximum achievable rate of hydrogen generation by promoting the release of evolved gas bubbles from the electrode surface. The benefits of catalyst micro- and nanostructuring are further demonstrated by the increased electrocatalytic activity of CoS2 nanowire electrodes over planar film electrodes toward polysulfide and triiodide reduction, which suggests a straightforward way to improve the performance of quantum dot- and dye-sensitized solar cells, respectively. Extension of this micro- and nanostructuring strategy to other earth-abundant materials could similarly enable inexpensive electrocatalysts that lack the high intrinsic activity of the noble metals.

摘要

发展高效、稳定的富地球元素电催化剂对于析氢反应(HER)是一个持续的挑战。我们报告了一种金属钴黄铁矿(二硫化钴,CoS2)作为高活性候选材料,并证明其特定形态——薄膜、微丝或纳米线,通过控制合成获得——在决定其整体催化效率方面起着至关重要的作用。CoS2 微纳结构化所带来的有效电极表面积的增加极大地提高了其 HER 催化性能,CoS2 纳米线电极在低至 -145 mV 的过电势下实现了-10 mA cm(-2)的几何电流密度,与可逆氢电极相比。此外,CoS2 材料的微纳结构化具有协同作用,通过促进从电极表面释放出的析出气体气泡,提高了其操作稳定性、循环性和最大可实现的产氢速率。催化剂微纳结构化的优势还通过 CoS2 纳米线电极相对于平面薄膜电极对多硫化物和三碘化物还原的增强电催化活性得到了证明,这表明了一种提高量子点和染料敏化太阳能电池性能的简便方法。将这种微纳结构化策略扩展到其他富地球元素材料上,同样可以实现缺乏贵金属高本征活性的廉价电催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验