Leiva-Guajardo Susana I, Fuentes Maya Manuel, Cáceres Luis, Jimenez-Arevalo Víctor M, Soliz Álvaro, Toro Norman, Cobos Murcia José Ángel, Cruz Victor E Reyes, Morel Mauricio, Fuentealba Edward, Galleguillos Madrid Felipe M
Centro de Desarrollo Energético Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile.
Departamento de Ingeniería Mecánica, Universidad de Tarapacá, Arica 1100000, Chile.
Materials (Basel). 2025 Jun 30;18(13):3092. doi: 10.3390/ma18133092.
The increasing demand for sustainable energy and clean water has prompted the exploration of alternative solutions to reduce reliance on fossil fuels. In this context, hydrogen production through water electrolysis powered by solar energy presents a promising pathway toward a zero-carbon footprint. This study investigates the potential of copper slag, an abundant industrial waste, as a low-cost electrocatalyst for the hydrogen evolution reaction (HER) in contact with saline water such as 0.5 M NaCl and seawater, comparing the electrochemical response when in contact with geothermal water from El Tatio (Atacama Desert). The physicochemical characterisation of copper slag was performed using XRD, Raman, and SEM-EDS to determine its surface properties. Electrochemical evaluations were conducted in 0.5 M NaCl and natural seawater using polarisation techniques to assess the corrosion behaviour and catalytic efficiency of the copper slag electrodes. The results indicate that copper slag exhibits high stability and promising HER kinetics, particularly in seawater, where its mesoporous structure facilitates efficient charge transfer processes. The key novelty of this manuscript lies in the direct revalorisation of untreated copper slag as a functional electrode for HER in real seawater and geothermal water, avoiding the use of expensive noble metals and aligning with circular economy principles. This innovative combination of recycled material and natural saline electrolyte enhances both the technical and economic viability of electrolysis, while reducing environmental impact and promoting green hydrogen production in coastal regions with high solar potential. This research contributes to the value of industrial waste, offering a viable pathway for advancing sustainable hydrogen technologies in real-world environments.
对可持续能源和清洁水的需求不断增加,促使人们探索替代解决方案,以减少对化石燃料的依赖。在此背景下,通过太阳能驱动的水电解制氢为实现零碳足迹提供了一条有前景的途径。本研究调查了铜渣(一种丰富的工业废料)作为与盐水(如0.5M NaCl和海水)接触的析氢反应(HER)低成本电催化剂的潜力,并比较了其与来自埃尔塔蒂奥(阿塔卡马沙漠)的地热水接触时的电化学响应。使用XRD、拉曼光谱和SEM-EDS对铜渣进行了物理化学表征,以确定其表面性质。在0.5M NaCl和天然海水中使用极化技术进行电化学评估,以评估铜渣电极的腐蚀行为和催化效率。结果表明,铜渣表现出高稳定性和有前景的HER动力学,特别是在海水中,其介孔结构有利于高效的电荷转移过程。本手稿的关键新颖之处在于将未经处理的铜渣直接重新利用为实际海水和地热水中HER的功能电极,避免使用昂贵的贵金属,并符合循环经济原则。这种回收材料与天然盐电解质的创新组合提高了电解的技术和经济可行性,同时减少了环境影响,并促进了具有高太阳能潜力的沿海地区的绿色制氢。本研究有助于提升工业废料的价值,为在实际环境中推进可持续制氢技术提供了一条可行途径。