Aubry Sylvain, Kelly Steven, Kümpers Britta M C, Smith-Unna Richard D, Hibberd Julian M
Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
PLoS Genet. 2014 Jun 5;10(6):e1004365. doi: 10.1371/journal.pgen.1004365. eCollection 2014 Jun.
With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice.
C4光合途径至少有60个独立起源,跨越单子叶植物和双子叶植物,是趋同进化最显著的例子之一。这种高度复杂的性状反复进化,涉及叶片解剖结构、细胞生物学和生物化学的改变,使得热带和亚热带地区的生产力提高了约50%。不同谱系的C4植物在多大程度上利用相同的遗传网络来维持C4光合作用尚不清楚。我们开发了一个新的信息学框架,以便对缺乏参考基因组的物种中的基因表达进行深入的进化比较。我们利用这个框架比较了代表两个独立C4谱系(白花菜和玉米)的物种中的基因表达,它们的最后一个共同祖先在约1.4亿年前分化。我们定义了一组3335个基因,这些基因代表了这些物种中叶片和光合发育的保守成分。此外,我们表明,编码C4循环蛋白的基因被纳入由光合作用相关基因定义的网络中。尽管C4表型在进化上有很大的分离和独立起源,但我们报告说,这些物种使用同源转录因子来诱导C4光合作用,并维持该途径运作所需的细胞特异性基因表达。我们定义了一个与叶片和光合成熟相关的核心分子特征,该特征可能被子叶植物和双子叶植物的最后一个共同祖先衍生的被子植物物种共享。我们表明,基因表达的深入进化比较可以揭示对高度复杂表型的分子趋同的新见解,并且反式因子的平行进化支撑了C4光合作用的反复出现。因此,利用与复杂性状相关的现存自然变异可用于识别调控因子。此外,独立C4谱系共享的转录因子是将C4途径工程导入水稻等C3作物的关键靶点。