Suppr超能文献

在进化机器人技术中结合环境驱动的适应性和任务驱动的优化。

Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

作者信息

Haasdijk Evert, Bredeche Nicolas, Eiben A E

机构信息

Computer Science Department, VU University Amsterdam, Amsterdam, Netherlands.

Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, ISIR, F-75005, Paris, France; CNRS, UMR 7222, ISIR, F-75005, Paris, France.

出版信息

PLoS One. 2014 Jun 5;9(6):e98466. doi: 10.1371/journal.pone.0098466. eCollection 2014.

Abstract

Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

摘要

具身进化机器人技术是进化机器人技术的一个子领域,它在机器人硬件本身的运行期间,即在线方式下,采用进化算法。这使得机器人系统能够持续适应,从而能够在无人监督的情况下自主地(重新)调整自身以适应先前未知或动态变化的条件。本文探讨了此类系统面临的一个主要挑战,即机器人必须满足两组要求。首先,它们必须在其环境中持续可靠地运行(生存能力),其次,它们必须出色地执行用户指定的任务(实用性)。我们提出的解决方案利用了进化方法有两种基本选择机制这一事实——幸存者选择和父代选择。这使得进化能够分别处理这两组要求:幸存者选择由环境驱动,父代选择基于任务性能。这个想法在多目标开放式进化(monee)框架中得到了详细阐述,我们对其进行了实验验证。对由100个模拟电子冰球组成的机器人集群进行的实验表明,monee确实促进了任务驱动行为,同时又不影响环境适应性。我们还研究了用“市场机制”扩展父代选择过程,这可以确保在多个任务上公平分配努力,如果环境促进单一任务的专业化,这是一个特别紧迫的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267d/4047010/ddd7189649e9/pone.0098466.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验