Suppr超能文献

用于进化机器人学的行为树

Behavior Trees for Evolutionary Robotics.

作者信息

Scheper Kirk Y W, Tijmons Sjoerd, de Visser Cornelis C, de Croon Guido C H E

机构信息

Delft University of Technology.

出版信息

Artif Life. 2016 Winter;22(1):23-48. doi: 10.1162/ARTL_a_00192. Epub 2015 Nov 25.

Abstract

Evolutionary Robotics allows robots with limited sensors and processing to tackle complex tasks by means of sensory-motor coordination. In this article we show the first application of the Behavior Tree framework on a real robotic platform using the evolutionary robotics methodology. This framework is used to improve the intelligibility of the emergent robotic behavior over that of the traditional neural network formulation. As a result, the behavior is easier to comprehend and manually adapt when crossing the reality gap from simulation to reality. This functionality is shown by performing real-world flight tests with the 20-g DelFly Explorer flapping wing micro air vehicle equipped with a 4-g onboard stereo vision system. The experiments show that the DelFly can fully autonomously search for and fly through a window with only its onboard sensors and processing. The success rate of the optimized behavior in simulation is 88%, and the corresponding real-world performance is 54% after user adaptation. Although this leaves room for improvement, it is higher than the 46% success rate from a tuned user-defined controller.

摘要

进化机器人技术使传感器和处理能力有限的机器人能够通过感觉运动协调来处理复杂任务。在本文中,我们展示了行为树框架在使用进化机器人技术方法的真实机器人平台上的首次应用。该框架用于提高涌现的机器人行为相对于传统神经网络公式的可理解性。因此,当从模拟跨越到现实的实际差距时,行为更容易理解和手动调整。通过使用配备4克机载立体视觉系统的20克重的DelFly Explorer扑翼微型飞行器进行实际飞行测试,展示了此功能。实验表明,DelFly仅依靠其机载传感器和处理能力就能完全自主地搜索并飞过一扇窗户。优化后的行为在模拟中的成功率为88%,经过用户调整后,相应的实际性能为54%。尽管仍有改进空间,但这高于经过调整的用户定义控制器的46%的成功率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验