Pillai Anup G, Henckens Marloes J A G, Fernández Guillén, Joëls Marian
Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
PLoS One. 2014 Jun 5;9(6):e99208. doi: 10.1371/journal.pone.0099208. eCollection 2014.
The rodent stress hormone corticosterone changes neuronal activity in a slow and persistent manner through transcriptional regulation. In the rat dorsal hippocampus, corticosterone enhances the amplitude of calcium-dependent potassium currents that cause a lingering slow after-hyperpolarization (sAHP) at the end of depolarizing events. In this study we compared the putative region-dependency of the delayed effects of corticosterone (approximately 5 hrs after treatment) on sAHP as well as other active and passive properties of layer 2/3 pyramidal neurons from three prefrontal areas, i.e. the lateral orbitofrontal, prelimbic and infralimbic cortex, with the hippocampus of adult mice. In agreement with previous studies, corticosterone increased sAHP amplitude in the dorsal hippocampus with depolarizing steps of increasing amplitude. However, in the lateral orbitofrontal, prelimbic and infralimbic cortices we did not observe any modifications of sAHP amplitude after corticosterone treatment. Properties of single action potentials or % ratio of the last spike interval with respect to the first spike interval, an indicator of accommodation in an action potential train, were not significantly affected by corticosterone in all brain regions examined. Lastly, corticosterone treatment did not induce any lasting changes in passive membrane properties of hippocampal or cortical neurons. Overall, the data indicate that corticosterone slowly and very persistently increases the sAHP amplitude in hippocampal pyramidal neurons, while this is not the case in the cortical regions examined. This implies that changes in excitability across brain regions reached by corticosterone may vary over a prolonged period of time after stress.
啮齿动物的应激激素皮质酮通过转录调控以缓慢且持久的方式改变神经元活动。在大鼠背侧海马体中,皮质酮增强了钙依赖性钾电流的幅度,该电流在去极化事件结束时会引起持续的缓慢超极化后电位(sAHP)。在本研究中,我们比较了皮质酮(治疗后约5小时)对来自三个前额叶区域(即外侧眶额皮质、前边缘皮质和下边缘皮质)的2/3层锥体神经元的sAHP以及其他主动和被动特性的延迟效应的假定区域依赖性,与成年小鼠的海马体进行了比较。与先前的研究一致,皮质酮通过增加幅度的去极化步骤增加了背侧海马体中的sAHP幅度。然而,在外侧眶额皮质、前边缘皮质和下边缘皮质中,我们在皮质酮治疗后未观察到sAHP幅度的任何变化。单动作电位的特性或最后一个峰间隔与第一个峰间隔的百分比比值(动作电位序列中适应性的指标)在所有检查的脑区中均未受到皮质酮的显著影响。最后,皮质酮治疗未在海马体或皮质神经元的被动膜特性中诱导任何持久变化。总体而言,数据表明皮质酮缓慢且非常持久地增加海马体锥体神经元中的sAHP幅度,而在所检查的皮质区域中并非如此。这意味着在应激后很长一段时间内,皮质酮作用的不同脑区的兴奋性变化可能会有所不同。