Department of Neuroscience and Genetics and Genomics Program, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
Neurobiol Learn Mem. 2019 Oct;164:107064. doi: 10.1016/j.nlm.2019.107064. Epub 2019 Aug 5.
The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca) signaling including an increase in the Ca-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca-dependent synaptic plasticity. Dysregulation of intracellular Ca and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca-dysregulation involves a decrease in Ca influx through NMDA receptors and an increase release of Ca from internal Ca stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.
当前的综述提供了一个关于衰老神经生理学假设机制的历史视角,重点关注海马 CA1 区,以及衰老神经生理学与受损的海马依赖记忆之间的关系。衰老神经生理学涉及与钙 (Ca) 信号相关的过程,包括 Ca 依赖性后超极化 (AHP) 的增加、锥体神经元兴奋性降低、N-甲基-D-天冬氨酸 (NMDA) 受体功能的反应迟钝以及 Ca 依赖性突触可塑性的转变。细胞内 Ca 的失调和激酶和磷酸酶活性的下游信号转导是衰老神经生理学的核心。Ca 失调涉及通过 NMDA 受体的 Ca 内流减少和内部 Ca 储存的 Ca 释放增加。最近的工作已经确定,氧化还原信号的变化,从中年开始,是衰老神经生理学的一个起始因素。氧化还原状态的转变将衰老、氧化应激和炎症的过程与情景记忆所需机制的功能变化联系起来。与 Ca 信号转导、表观遗传学和基因表达相关的年龄变化之间的联系是一个令人兴奋的研究领域。从中年开始的药理学和行为干预可以通过启动神经保护基因的转录和恢复神经生理学来促进记忆功能。然而,随着年龄的增长,或在神经退行性疾病的情况下,表观遗传变化可能会削弱环境影响与转录之间的联系,降低记忆功能的弹性。