Herberich Esther, Hassler Christine, Hothorn Torsten
Int J Biostat. 2014;10(2):289-302. doi: 10.1515/ijb-2013-0003.
Much biological experimental data are represented as curves, including measurements of growth, hormone, or enzyme levels, and physical structures. Here we consider the multiple testing problem of comparing two or more nonlinear curves. We model smooth curves of unknown form nonparametrically using penalized splines. We use random effects to model subject-specific deviations from the group-level curve. We present an approach that allows examination of overall differences between the curves of multiple groups and detection of sections in which the curves differ. Adjusted p-values for each single comparison can be obtained by exploiting the connection between semiparametric mixed models and linear mixed models and employing an approach for multiple testing in general parametric models. In simulations, we show that the probability of false-positive findings of differences between any two curves in at least one position can be controlled by a pre-specified error level. We apply our method to compare curves describing the form of the mouse dorsal funiculus - a morphological curved structure in the spinal cord - in mice wild-type for the gene encoding EphA4 or heterozygous with one of two mutations in the gene.
许多生物学实验数据都以曲线形式呈现,包括生长、激素或酶水平的测量数据以及物理结构数据。在此,我们考虑比较两条或多条非线性曲线时的多重检验问题。我们使用惩罚样条对未知形式的平滑曲线进行非参数建模。我们使用随机效应来对个体相对于组水平曲线的偏差进行建模。我们提出了一种方法,该方法能够检验多组曲线之间的总体差异,并检测出曲线存在差异的部分。通过利用半参数混合模型与线性混合模型之间的联系,并采用一般参数模型中的多重检验方法,可以获得每次单个比较的校正p值。在模拟中,我们表明,至少在一个位置上,任意两条曲线之间出现假阳性差异结果的概率可以通过预先设定的误差水平来控制。我们应用我们的方法来比较描述小鼠背索形态的曲线——背索是脊髓中的一种形态弯曲结构——在编码EphA4基因的野生型小鼠或该基因有两种突变之一的杂合小鼠中。