School of Engineering, Engineering Hub, University of Lincoln Lincoln, Lincolnshire, UK.
School of Computer Science, APT Group, University of Manchester Manchester, Lancashire, UK.
Front Neural Circuits. 2014 May 20;8:46. doi: 10.3389/fncir.2014.00046. eCollection 2014.
We present a preliminary study of a thalamo-cortico-thalamic (TCT) implementation on SpiNNaker (Spiking Neural Network architecture), a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behavior similar to Electroencephalogram (EEG) time and power-spectra signatures in sleep-wake transition. The scale of the model is minimized for simplicity in this proof-of-concept study; thus the total number of spiking neurons is ≈1000 and represents a "mini-column" of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG power spectra characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity-the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.
我们提出了一种在 SpiNNaker(一种受大脑启发的硬件平台,旨在整合并行性、容错性和能效等固有生物学特性)上实现丘脑-皮质-丘脑(TCT)的初步研究。这些属性使 SpiNNaker 成为模拟生物上合理的计算模型的理想平台。我们在这项工作中的重点是设计一个可以在 SpiNNaker 上模拟的 TCT 框架,以模拟睡眠-觉醒转换中类似脑电图(EEG)时间和功率谱特征的动力学行为。为了在这个概念验证研究中简化模型规模,我们将模型的总神经元数量最小化到 ≈1000 个,代表了丘脑皮质组织的“迷你柱”。模型结构、突触布局和参数的所有数据都受到先前研究的启发,并进行了抽象,抽象级别既适合当前研究的目标,又适合在小型 4 芯片 SpiNNaker 系统上进行模型模拟。模型中选择性删除突触连接参数的初始结果显示与睡眠和觉醒的 EEG 功率谱特征相似。这些观察结果提供了一个积极的视角和未来实现大规模生物合理的丘脑-皮质-丘脑相互作用模型的基础,这是调节生物睡眠-觉醒周期和相关 EEG 节律的基本大脑回路。